Skip to main content
Chemistry LibreTexts

The canonical ensemble

  • Page ID
    5257
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    In analogy to the classical canonical ensemble, the quantum canonical ensemble is defined by

    \[ \underline {\rho } \] $\textstyle =$ data-cke-saved-style =$ data-cke-saved-style =$ data-cke-saved-style =$ \(e^{-\beta H}\)
    \[f(E_i) \] $\textstyle =$ data-cke-saved-style =$ data-cke-saved-style =$ data-cke-saved-style =$ \(e^{-\beta E_i}\)


    Thus, the quantum canonical partition function is given by

    \[Q(N,V,T) = {\rm Tr}(e^{-\beta H}) = \sum_i e^{-\beta E_i}\]


    and the thermodynamics derived from it are the same as in the classical case:

    \[A (N, V, T ) \] $\textstyle =$ data-cke-saved-style =$ data-cke-saved-style =$ data-cke-saved-style =$ \(-{1 \over \beta}\ln Q(N,V,T)\)
    \[E (N, V, T ) \] $\textstyle =$ data-cke-saved-style =$ data-cke-saved-style =$ data-cke-saved-style =$ \(-{\partial \over \partial \beta}\ln Q(N,V,T)\)
    \[ P (N, V, T) \] $\textstyle =$ data-cke-saved-style =$ data-cke-saved-style =$ data-cke-saved-style =$ \({1 \over \beta}{\partial \over \partial V}\ln Q(N,V,T)\)


    etc. Note that the expectation value of an observable \(A\) is

    \[\langle A \rangle = {1 \over Q}{\rm Tr}(Ae^{-\beta H})\]


    Evaluating the trace in the basis of eigenvectors of \(H\) (and of \(\underline {\rho } \) ), we obtain

    \[\langle A \rangle = {1 \over Q}\sum_i \langle E_i\vert Ae^{-\beta H} \vert E_i \rangle = {1 \over Q}\sum_i e^{-\beta E_i} \langle E_i\vert A\vert E_i\rangle\]


    The quantum canonical ensemble will be particularly useful to us in many things to come.

    Contributors and Attributions

    Mark Tuckerman (New York University)


    The canonical ensemble is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?