Skip to main content
Chemistry LibreTexts

Relation between canonical and microcanonical ensembles

  • Page ID
    5170
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We saw that the \(E (N, V, S)\) and \(A (N, V, T)\) could be related by a Legendre transformation. The partition functions \(\Omega (N, V, E)\) and \(Q (N, V, T)\) can be related by a Laplace transform. Recall that the Laplace transform \(\tilde {f} (\lambda)\) of a function \( f (x)\) is given by

    \[ \tilde {f} (\lambda) = \int _{0}^{\infty} dx e^{- \lambda x} f (x) \]

    Let us compute the Laplace transform of \(\Omega (N, V, E ) \) with respect to \(E\):

    \[ \tilde {\Omega} (N, V, \lambda ) = C_N \int _{0}^{\infty} dE e^{- \lambda E} \int dx \delta ( H (x) - E ) \]


    Using the \(\delta\)-function to do the integral over \(E\):

    \[\tilde {\Omega} (N, V, \lambda ) = C_N \int dx e^{- \lambda H (x) } \]


    By identifying \(\lambda = \beta \), we see that the Laplace transform of the microcanonical partition function gives the canonical partition function \(Q (N, V, T ) \).

    Contributors and Attributions

    Mark Tuckerman (New York University)


    This page titled Relation between canonical and microcanonical ensembles is shared under a not declared license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?