# The Microscopic Laws of Motion

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Consider a system of $$N$$ classical particles. The particles a confined to a particular region of space by a container'' of volume $$V$$. The particles have a finite kinetic energy and are therefore in constant motion, driven by the forces they exert on each other (and any external forces which may be present). At a given instant in time $$t$$, the Cartesian positions of the particles are $$r_1(t), \cdots , r_N(t)$$﻿) ) . The time evolution of the positions of the particles is then given by Newton's second law of motion:

$m_i \ddot {r} _i = F_i ( r_1, \cdots , r_N )$

where $$F_1, \cdots , F_N$$ are the forces on each of the $$N$$ particles due to all the other particles in the system. The notation $$\ddot {r} _i = \frac {d^2 r_i}{dt^2}$$.

N Newton's equations of motion constitute a set of $$3N$$ coupled second order differential equations. In order to solve these, it is necessary to specify a set of appropriate initial conditions on the coordinates and their first time derivatives, $$\{r_1 (0), \cdots , r_N(0), \dot {r} _1 (0), \cdots , \dot {r} _N (0) \}$$. Then, the solution of Newton's equations gives the complete set of coordinates and velocities for all time $$t$$.