Skip to main content
Chemistry LibreTexts

NMR8. Chemical Shift in 1H NMR

  • Page ID
    4199
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The trends here are exactly the same as in carbon spectra. Wherever the carbon goes, it takes the proton with it. By analogy with carbon spectra,

    • Source: Simulated spectrum.

      NMR 1H10.gif

      Figure NMR12.1H NMR spectrum of 1-hexene.

      Source: Simulated spectrum.

      NMR 1H11.gif

      Figure NMR13.1H NMR spectrum of butanal.

      Source: Simulated spectrum.

      As before, there are also hydrogens on linear carbons, although they are much less common than tetrahedral or trigonal carbons.

      • Remember, these are general rules that you should know. There will occasionally be exceptions; the proton in a carboxylic acid may be seen at 12 ppm, and the proton in chloroform shows up at 7 ppm although it is attached to a tetrahedral carbon. (World-record shifts occur for hydrogens attached to transition metals: "late" metals like ruthenium or rhodium can move hydrogen peaks all the way up to -20 ppm, but "early" metals like tantalum can move them down as far as 25 ppm.)

        Contributors and Attributions


    This page titled NMR8. Chemical Shift in 1H NMR is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Chris Schaller.

    • Was this article helpful?