Skip to main content
Chemistry LibreTexts

1.45: Terse Analysis of Triple-slit Diffraction with a Quantum Eraser

  • Page ID
    149263
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Slit positions, slit width and the wavefunction at the slit screen which is a superposition of the photon being simultaneously present at all three slits.

    \[
    \mathrm{x}_{1} :=-\frac{1}{2} \quad \mathrm{x}_{2} :=0 \quad \mathrm{x}_{3} :=\frac{1}{2} \quad \delta :=0.1
    \nonumber \]

    \[
    | \Psi \rangle=\frac{1}{\sqrt{3}}\left[ | x_{1}\right\rangle+| x_{2} \rangle+| x_{3} \rangle ]
    \nonumber \]

    Calculate the diffraction pattern by a Fourier transform of the spatial wavefunction into momentum space.

    \[
    \langle p | \Psi\rangle=\frac{1}{\sqrt{3}}\left[\left\langle p | x_{1}\right\rangle+\left\langle p | x_{2}\right\rangle+\left\langle p | x_{3}\right\rangle\right]
    \nonumber \]

    \[
    \Psi(\mathrm{p}) := \int_{\mathrm{x}_{1}-\frac{\delta}{2}}^{\mathrm{x}_{1}+\frac{\delta}{2}} \frac{1}{\sqrt{2 \cdot \pi}} \cdot \exp (-\mathrm{i} \cdot \mathrm{p} \cdot \mathrm{x}) \cdot \frac{1}{\sqrt{\delta}} \mathrm{d} \mathrm{x} +\int_{\mathrm{x}_{2}-\frac{\delta}{2}}^{\mathrm{x}_{2}+\frac{\delta}{2}} \frac{1}{\sqrt{2 \cdot \pi}} \cdot \exp (-\mathrm{i} \cdot \mathrm{p} \cdot \mathrm{x}) \cdot \frac{1}{\sqrt{\delta}} \mathrm{dx} +\int_{\mathrm{x}_{3}-\frac{\delta}{2}}^{\mathrm{x}_{3}+\frac{\delta}{2}} \frac{1}{\sqrt{2 \cdot \pi}} \cdot \exp (-\mathrm{i} \cdot \mathrm{p} \cdot \mathrm{x}) \cdot \frac{1}{\sqrt{\delta}} \mathrm{dx}
    \nonumber \]

    Display the momentum distribution function which is the diffraction pattern.

    clipboard_e6f4de8c91474052b262709a70fca32b6.png

    Tag the slits with orthogonal states.

    \[
    \left\langle p | \Psi^{\prime}\right\rangle=\frac{1}{\sqrt{3}}\left[\left\langle p | x_{1}\right\rangle | \uparrow\right\rangle+\left\langle p | x_{2}\right\rangle | \rightarrow \rangle+\left\langle p | x_{3}\right\rangle | \downarrow \rangle ]
    \nonumber \]

    Recalculate the momentum distribution.

    \[
    \Psi^{\prime}(\mathrm{p}) :=\int_{\mathrm{x}_{1} \frac{\delta}{2}}^{\mathrm{x}_{1}+\frac{\delta}{2}} \frac{1}{\sqrt{2 \cdot \pi}} \cdot \exp (-\mathrm{i} \cdot \mathrm{p} \cdot \mathrm{x}) \cdot \frac{1}{\sqrt{\delta}} \mathrm{d} x \cdot \left( \begin{array}{l}{1} \\ {0} \\ {0}\end{array}\right)+ \\ \int_{\mathrm{x}_{2}-\frac{\delta}{2}}^{\mathrm{x}_{2}+\frac{\delta}{2}} \frac{1}{\sqrt{2 \cdot \pi}} \cdot \exp (-\mathrm{i} \cdot \mathrm{p} \cdot \mathrm{x}) \cdot \frac{1}{\sqrt{\delta}} \mathrm{d} \mathrm{x} \cdot \left( \begin{array}{l}{0} \\ {1} \\ {0}\end{array}\right)+\int_{\mathrm{x}_{3}-\frac{\delta}{2}}^{\mathrm{x}_{3}+\frac{\delta}{2}} \frac{1}{\sqrt{2 \cdot \pi}} \cdot \exp (-\mathrm{i} \cdot \mathrm{p} \cdot \mathrm{x}) \cdot \frac{1}{\sqrt{\delta}} \mathrm{d} \mathrm{x} \cdot \left( \begin{array}{l}{0} \\ {0} \\ {1}\end{array}\right)
    \nonumber \]

    Display the momentum distribution at the detection screen showing that the diffraction pattern has disappeared. The orthogonallity of the tags destroys the cross-terms in the momentum distribution, \left|\Psi^{\prime}(\mathrm{p})\right|^{2}, which give rise to the interference effects shown in the original diffraction pattern.

    clipboard_e796692db5c09671ae865036fd19b912f.png

    Insert an "eraser" after the slit screen and before the detection screen.

    \[
    \Psi^{\prime \prime}(\mathrm{p}) :=\frac{1}{\sqrt{3}} \cdot \left( \begin{array}{l}{1} \\ {1} \\ {1}\end{array}\right)^{\mathrm{T}} . \Psi^{\prime}(\mathrm{p})
    \nonumber \]

    The diffraction pattern is restored but attenuated because the so-called "eraser" filters out the orthogonal tags restoring the interference terms.

    clipboard_ea472dc58dbff1a78ab1ec40c438c9df1.png


    This page titled 1.45: Terse Analysis of Triple-slit Diffraction with a Quantum Eraser is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.