Skip to main content
Chemistry LibreTexts

413: Numerical Solutions for the Two-Dimensional Harmonic Oscillator

  • Page ID
    137742
  • Reduced mass: \( \mu\) = 1

    Angular momentum: L = 2

    Integration limit: rmax = 5

    Force constant: k = 1

    Energy guess: E = 3

    Solve Schrödinger's equation numerically. Use Mathcad's ODE solve block:

    Given

    \[ \frac{-1}{2 \mu} \frac{d^2}{dr^2} \psi (r) - \frac{1}{2 \mu} \frac{d}{dr} \psi (r) + \left( \frac{L^2}{2 \mu r^2} + \frac{1}{2} kr^2\right) \psi (r) = E \psi (r)~~~ \psi (.001) = 1~~~ \psi '(.001) = 0.1\]

    \[ \psi = Odesolve (r, r_{max}, .001)\]

    \[ \psi (r) = \left( \int_{0}^{r_{max}} \psi (r)^2 4 \pi r^2 dr \right) ^{ \frac{-1}{2}} \psi (r)\]

    Screen Shot 2019-02-19 at 11.44.13 AM.png