Skip to main content
Chemistry LibreTexts

9.14: Numerical Solutions for the Double Morse Potential

  • Page ID
    137732
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Schrödinger's equation is integrated numerically for the first four energy states for the double Morse oscillator. The integration algorithm is taken from J. C. Hansen, J. Chem. Educ. Software, 8C2, 1996.

    Set parameters:

    n = 200

    xmin = -10

    xmax = 10

    \[ \Delta = \frac{xmax - xmin}{n-1} \nonumber \]

    \( \mu\) = 1

    D = 2

    \( \beta\) = 1

    x0 = 1

    Calculate position vector, the potential energy matrix, and the kinetic energy matrix. Then combine them into a total energy matrix.

    i = 1 .. n j = 1 .. n xi = xmin + (i - 1) \( \Delta\)

    \[ V_{i,~j} = if \bigg[ i =j,~ D \big[ 1 - exp \big[ - \beta (|x_i| - x_0) \big] \big] ^2 ,~0 \bigg] \nonumber \]

    \[ T_{i,~j} = if \bigg[ i=j, \frac{ \pi ^{2}}{6 \mu \Delta ^{2}}, \frac{ (-1)^{i-j}}{ (i-j)^{2} \mu \Delta^{2}} \bigg] \nonumber \]

    Hamiltonian matrix: H = T + V

    Find eigenvalues: E = sort(eigenvals(H))

    Display four eigenvalues: m = 1 .. 4

    Em =

    \( \begin{array}{|r|}
    \hline \\
    0.8092 \\
    \hline \\
    0.9127 \\
    \hline \\
    1.8284 \\
    \hline \\
    1.8975 \\
    \hline
    \end{array} \)

    Calculate associated eigenfunctions:

    k = 1 .. 4

    \[ \psi (k) = eigenvec (H, E_k) \nonumber \]

    Plot the potential energy and bound state eigenfunctions:

    \[ Vpot_i = V_{i,~i} \nonumber \]

    Screen Shot 2019-02-06 at 7.32.57 PM.png


    This page titled 9.14: Numerical Solutions for the Double Morse Potential is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.