Skip to main content
Chemistry LibreTexts

5.7: A Model Graphene Diffraction Pattern

  • Page ID
    150522
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The purpose of this tutorial is to model graphene as seven fused benzene rings (see below) and use a Fourier transform of the atomic positions to calculate its diffraction pattern.

    \[ \begin{matrix} \text{Number of atoms:} & A = 24 & \text{Atomic dimension:} & d = .25 & \text{Atomic positions:} \\ x_1 = 0 & y_1 = 1.386 & x_2 = 0 & y_2 = -1.386 & x_{15} = 0 & y_{15} = 2.772 \\ x_3 = -1.2 & y_3 = 0.693 & x_4 = 1.2 & y_4 = 0.693 & x_{16} = 1.2 & y_{16} = 3.465 \\ x_5 = 1.2 & y_5 = -0.693 & x_6 = -1.2 & y_6 = -0.693 & x_{17} = 2.4 & y_{17} 2.772 \\ x_7 = 2.4 & y_7 = 1.386 & x_8 = 3.6 & y_8 = 0.693 & x_{18} = 0 & y_{18} = -2.772 \\ x_9 = 3.6 & y_9 = -0.693 & x_{10} = 2.4 & y_{10} = -1.386 & x_{19} = 1.2 & y_{19} = -3.465 \\ x_{11} = -2.4 & y_{11} = 1.368 & x_{12} = -3.6 & y_{12} = 0.693 & x_{20} = 2.4 & y_{20} = -2.772 \\ x_{13} = -3.6 & y_{13} = -0.693 & x_{14} = -2.4 & y_{14} = -1.386 & x_{21} = -2.4 & y_{21} = 2.772 \\ x_{22} = -1.2 & y_{22} = 3.465 & x_{23} = -2.4 & y_{23} = -2.772 & x_{24} = -1.2 & y_{24} = -3.465 \end{matrix} \nonumber \]

    The diffraction pattern is the Fourier transform of the atomic positions into momentum space.

    \[ \begin{matrix} \Delta = 20 & N = 200 & j = 0 .. N & px_j = - \Delta + \frac{2 \Delta j}{N} & k = 0 .. N & py_k = - \Delta + \frac{2 \Delta k}{N} \end{matrix} \nonumber \]

    \[ \begin{matrix} \Psi (p_x,~p_y) = \sum_{m=1}^{A} \left( \int_{x_m - \frac{d}{2}} ^{x_m + \frac{d}{2}} exp (-i p_x x)dx \int_{y_m - \frac{d}{2}} ^{y_m + \frac{d}{2}} exp(-i p_y y) dx \right) & p_{j,~k} = \left( \left| \Psi ( px_j,~py_j) \right| \right)^2 \end{matrix} \nonumber \]

    \( i = 1 .. A\)

    Screen Shot 2019-05-08 at 2.07.04 PM.png


    This page titled 5.7: A Model Graphene Diffraction Pattern is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.