Skip to main content
Chemistry LibreTexts

10.32: Momentum-Space Variation Method for the Abs(x) Potential

  • Page ID
    136982
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The energy operator in atomic units in coordinate space for a unit mass particle with potential energy V = |x| is given below.

    \[ H = \frac{-1}{2} \frac{d^2}{dx^2} \blacksquare + |x| \blacksquare \nonumber \]

    Suggested trial wave function:

    \[ \Psi (x, \beta ) := ( \frac{2 \beta}{ \pi})^{ \frac{1}{4}} exp(- \beta x^2) \nonumber \]

    Demonstrate that the wave function is normalized.

    \[ \int_{- \infty}^{ \infty} \Psi (x, \beta )^2 dx~~assume,~ \beta >0 \rightarrow 1 \nonumber \]

    Carry out Fourier transform to get momentum wave function:

    \[ \Phi (p, \beta ) := \frac{1}{ \sqrt{2 \pi}} \int_{- \infty}^{ \infty} exp(-ipx) \Psi (x, \beta ) dx |_{simplify}^{assume,~ \beta > 1} \rightarrow \frac{1}{2} \frac{2^{ \frac{3}{4}}}{ \pi ^{ \frac{1}{4}}} \frac{e^{\frac{-1}{4}} \frac{p^2}{ \beta}}{ \beta ^{ \frac{1}{4}}} \nonumber \]

    Demonstrate that the momentum wave function is normalized.

    \[ \int_{- \infty}^{ \infty} \overline{ \Phi (p, \beta )} \Phi (p, \beta ) dp~~~assume,~ \beta > 0 \rightarrow 1 \nonumber \]

    The energy operator in momentum space is:

    \[ H = \frac{p^2}{2} \blacksquare + |i + \frac{d}{dp} \blacksquare| \nonumber \]

    Evaluate the variational energy integral:

    \[ E( \beta ) := \int_{- \infty}^{ \infty} \overline{ \Phi (p, \beta )} \frac{p^2}{2} \Phi (p, \beta ) dp + \int_{- \infty}^{ \infty} \overline{ \Phi (p, \beta )} |i \frac{d}{dp} \Phi (p , \beta )| dp |_{simplify}^{assume,~ \beta >0} \frac{1}{2} \frac{ \pi^{ \frac{1}{2}} \beta^{ \frac{3}{2}} + 2^{ \frac{1}{2}}}{ \beta^{ \frac{1}{2}} \pi^{ \frac{1}{2}}} \nonumber \]

    Minimize the energy with respect to the variational parameter β and report its optimum value and the ground-state energy.

    \( \beta\) := 1 \( \beta\) := Minimize (E, \( \beta\)) \( \beta\) = 0.542 E( \( \beta\)) = 0.813

    Plot the coordinate and momentum wave functions and the potential energy on the same graph.

    Screen Shot 2019-02-14 at 1.59.10 PM.png


    This page titled 10.32: Momentum-Space Variation Method for the Abs(x) Potential is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.