Skip to main content
Chemistry LibreTexts

10.30: The Variation Method in Momentum Space

  • Page ID
    136979
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The following normalized trial wavefunction is proposed for a variational calculation on the harmonic oscillator.

    \[ \psi (x, a) := \sqrt{ \frac{1}{a}} exp( \frac{-|x|}{a}) \nonumber \]

    \[ \int_{- \infty}^{ \infty} \psi (x, a)^2 dx~~~assume,~a > 0 \rightarrow 1 \nonumber \]

    However, the graph below shows a cusp at x = 0, indicating that the wavefunction is not well‐behaved and therefore cannot be used for quantum mechanical calculations.

    Screen Shot 2019-02-14 at 1.23.02 PM.png

    Therefore, the wavefunction is Fourier transformed into the momentum representation.

    \[ \Phi (p, a) := \int_{- \infty}^{ \infty} \frac{exp(-ipx)}{ \sqrt{2 \pi}} \sqrt{ \frac{1}{a}} exp( \frac{-|x|}{a}) dx~|_{simplify}^{assume,~a>0} \rightarrow (-a^{ \frac{1}{2}}) \frac{2^{ \frac{1}{2}}}{(ipa-1) \pi ^{ \frac{1}{2}} (ipa +1)} \nonumber \]

    Normalization is checked and the function is graphed.

    \[ \int_{- \infty}^{ \infty} \Phi (p, a)^2 dp~~~assume,~a > 0 \rightarrow 1 \nonumber \]

    Screen Shot 2019-02-14 at 1.23.08 PM.png

    The momentum wavefunction appears to be well‐behaved, so a variational calculation will be carried out in momentum space.

    Assuming a m = k =1 and h = 2π, we have for the harmonic oscillator in momentum space.

    • Momentum space integral: \( \int_{- \infty}^{ \infty} \blacksquare dp\)
    • Momentum operator: \( p \blacksquare\)
    • Kinetic energy operator: \( \frac{p^2}{2}\)
    • Position operator: \( i \frac{d}{dp} \blacksquare\)
    • Potential energy operator: \( \frac{-1}{2} \frac{d^2}{dp^2} \blacksquare\)

    Evaluate the energy integral in the momentum representation:

    \[ E(a) := \int_{- \infty}^{ \infty} \Phi (p, a) \frac{p^2}{2} \Phi (p, a) dp... + \int_{- \infty}^{ \infty} \Phi (p, a) \frac{-1}{2} \frac{d^2}{dp^2} \Phi (p, a) dp~|_{assume,~a >0}^{simplify} \rightarrow \frac{1}{4} \frac{2 + a^4}{a^2} \nonumber \]

    Minimize energy with respect to the variational parameter:

    a := 1 a := Minimize (E, a) a = 1.189 E(a) = 0.707

    Display optimum wavefunction along with exact wavefunction:

    \[ Exact(p) := \frac{1}{ \pi ^{ \frac{1}{4}}} e^{ \frac{-1}{2} p^2} \nonumber \]

    Screen Shot 2019-02-14 at 1.23.15 PM.png

    Naturally the agreement with the exact solution is not favorable because of the poor quality of the original coordinate space wavefunction.

    \[ \frac{E(a) - 0.5}{0.5} = 41.421 \nonumber \]


    This page titled 10.30: The Variation Method in Momentum Space is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.