# 438: Variation Calculation on the 1D Hydrogen Atom Using a Gaussian Trial Wavefunction

- Page ID
- 136971

The energy operator for this problem is:

\[ \frac{-1}{2} \frac{d^2}{dx^2} \blacksquare - \frac{1}{x} \blacksquare\]

The trial wave function is:

\[ \psi (x, \alpha ) = 2 ( \frac{2 \alpha}{ \pi^{ \frac{1}{3}}}) (x) exp( - \alpha x^2)\]

Evaluate the energy integral.

\[ E( \alpha ) = \int_{x}^{ \alpha} - \frac{1}{2} \frac{d^2}{dx^2} \psi (x, \alpha ) dx + \int_{0}^{ \infty} \frac{-1}{x} \psi (x, \alpha )^2 dx |_{simplify}^{assume,~ \alpha > 0} \rightarrow \frac{-1}{2 \pi^{ \frac{1}{2}}} [ (-3) \pi^{ \frac{1}{2}} \alpha + (4) 2^{ \frac{1}{2}} \alpha ^{ \frac{1}{2}}]\]

Minimize the energy with respect to the variational parameter \( \alpha\) and report its optimum value and the ground-state energy.

\( \alpha\) = 1 \( \alpha\) = Minimize (E, \( \alpha\)) \( \alpha\) = 0.2829 E ( \(\alpha\)) = -0.4244

The exact ground state energy for the hydrogen atom is -0.5 E_{h}. Calculate the percent error.

\[ \left| \dfrac{-0.5 - E( \alpha )}{-0.5} \right| = 15.1174\]

Plot the optimized trial wave function and the exact solution, \( \Phi (x) = 2(x) exp(-x)\).

Find the distance from the nucleus within which there is a 95% probability of finding the electron.

\( \alpha\) = 1. Given:

\[ \int_{0}^{a} \psi (x, \alpha )^2 dx = .95\]

Find (a) = 2.6277

Find the most probable value of the position of the electron from the nucleus.

\[ \alpha = 0.2829 \frac{d}{dx} | \psi (x, \alpha )| = 0 |_{float,~3}^{solve,~x} \rightarrow {\begin{pmatrix}

-1.33 \\

1.33

\end{pmatrix}}\]

Calculate the probability that the electron will be found between the nucleus and the most probable distance from the nucleus.

\[ \int_{0}^{1.33} \psi ( \alpha , x)^2 dx = 0.3584\]

Break the energy down into kinetic and potential energy contributions. Is the *virial theorem* obeyed?

\[ \begin{align*} T &= \int_{0}^{ \infty} \psi (x, \alpha ) \frac{1}{2} \frac{d^2}{dx^2} \psi (x, \alpha ) dx \\[4pt] &= 0.4244\end{align*}\]

\[ \begin{align*} V &= \int_{0}^{ \infty} \frac{-1}{x} \psi (x, \alpha )^2 dx \\[4pt] &= -0.8488 \end{align*}\]

\[ | \frac{V}{T}| = 2.00\]

Calculate the probability that tunneling is occurring.

Classical turning point:

\[ E( \alpha ) = \frac{-1}{x}|_{float,~3}^{solve,~x} \rightarrow 2.36\]

Tunneling probability:

\[ \int_{2.36}^{ \infty} \psi (x, \alpha )^2 dx = 0.0978\]