Skip to main content
Chemistry LibreTexts

10.16: Variation Method for a Particle in a Finite 3D Spherical Potential Well

  • Page ID
    136254
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    This problem deals with a particle of unit mass in a finite spherical potential well of radius 2 ao and well height 2 Eh. The trial wave function is given below.

    \[ \psi (r, \beta ) := ( \frac{2 \beta}{ \pi})^{ \frac{3}{4}} exp(- \beta r^2) \nonumber \]

    \[ T = - \frac{1}{2r} \frac{d^2}{dr^2} (r \blacksquare ) \nonumber \]

    \( V(r) := if [(r \leq 2), 0, 2]\)

    Screen Shot 2019-02-12 at 12.23.13 PM.png

    a. Demonstrate that the wave function is normalized.

    \[ \int_{0}^{ \infty} \psi (r, \beta )^2 4 \pi r^2 dr |_{simplify}^{assume,~ \beta > 0} \rightarrow 1 \nonumber \]

    b. Evaluate the variational integral.

    \[ E( \beta ) := \int_{0}^{ \infty} \psi (r, \beta ) [- \frac{1}{2r} \frac{d^2}{dr^2} (r \psi (r, \beta ))] 4 \pi r^2 dr ... |_{simplify}^{assume,~ \beta > 0} + \int_{2}^{ \infty} 2 \psi (r, \beta )^2 4 \pi r^2 dr \nonumber \]

    \[ E( \beta ) := \frac{1}{2} \frac{3 \pi^{ \frac{1}{2}} \beta + 4 \pi ^{ \frac{1}{2}} + 16 exp(-8 \beta) 2^{ \frac{1}{2}} \beta^{ \frac{1}{2}}-4 \pi ^{\frac{1}{2}} erf((2) 2^{ \frac{1}{2}} \beta^{ \frac{1}{2}}) }{ \pi ^{ \frac{1}{2}}} \nonumber \]

    c. Minimize the energy with respect to the variational parameter \( \beta\).

    \( \beta\) := 5 \( \beta\) := Minimize (E, \beta ) \( \beta\) = 0.381 \( E ( \beta ) = 0.786\)

    d. Calculate the average value of r.

    \( \int_{0}^{ \infty} r \psi (r, \beta )^2 4 \pi r^2 dr = 1.293\)

    e. Calculate the kinetic and potential energy.

    Potential energy:

    \( \int_{2}^{ \infty} r \psi (r, \beta )^2 4 \pi r^2 dr = 0.215\)

    Kinetic energy:

    \( E( \beta ) - 0.215 = 0.571\)

    f. Calculate the probability that the particle is in the barrier.

    \( 1 - \int_{0}^{2} \psi (r, \beta )^2 4 \pi r^2 dr = 0.107\)

    g. Plot the wavefunction on the same graph as the potential energy.

    Screen Shot 2019-02-12 at 12.27.48 PM.png


    This page titled 10.16: Variation Method for a Particle in a Finite 3D Spherical Potential Well is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.