Skip to main content
Chemistry LibreTexts

10.15: Variation Method for a Particle in an Ice Cream Cone

  • Page ID
    136253
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A Gaussian function is proposed as a trial wavefunction in a variational calculation for a particle experiencing a linear radial potential energy. Determine the optimum value of the parameter β and the optimum ground state energy. Use atomic units: h = 2π, me = 1, e = ‐1.

    \[ \psi (r, \beta ) := ( \frac{2 \beta}{ \pi})^{ \frac{3}{4}} exp(- \beta r^2) \nonumber \]

    \[ T = \frac{1}{2r} \frac{d^2}{dr^2} (r \blacksquare ) \nonumber \]

    \[ V = r \nonumber \]

    \[ \int_{0}^{ \infty} \blacksquare 4 \pi r^2 dr \nonumber \]

    a. Demonstrate the wave function is normalized.

    \[ \int_{0}^{ \infty} \psi (r, \beta )^2 4 \pi r^2 dr |_{simplify}^{assume,~ \beta >0} \rightarrow 1 \nonumber \]

    b. Evaluate the variational integral.

    \[ E( \beta ) := \int_{0}^{ \infty} \psi (r, \beta [ (- \frac{1}{2r}) \frac{d^2}{dr^2} (r \psi (r, \beta))] 4 \pi r^2 dr ... |_{simplify}^{assume,~ \beta > 0} \rightarrow \frac{1}{2} \frac{3 \pi^{ \frac{1}{2}} \beta^2 + (2)2^{ \frac{1}{2}} \beta ^{ \frac{1}{2}}}{ \pi^{ \frac{1}{2}} \beta} \nonumber \]

    c. Minimize the energy with respect to the variational parameter \( \beta\).

    \( \beta\) := 1 \( \beta\) := Minimize(E, \beta ) \( \beta\) = 0.414 E( \( \beta\)) = 1.861

    d. Plot the optimized trial wave function.

    Screen Shot 2019-02-12 at 12.18.49 PM.png


    This page titled 10.15: Variation Method for a Particle in an Ice Cream Cone is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.