Skip to main content
Chemistry LibreTexts

10.12: Variation Method for a Particle in a Semi-Infinite Potential Well

  • Page ID
    136124
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    This problem deals with the variational approach to the particle in the semi-infinite potential well.

    Kinetic energy operator: \( - \frac{1}{2} \frac{d^2}{dx^2} \blacksquare\)

    Integral: \( \int_{0}^{ \infty} \blacksquare dx\)

    Potential energy: \( V(x) := if[( x \leq 2), 0 , 2]\)

    Screen Shot 2019-02-11 at 1.25.50 PM.png

    Trial wave function: \( \Phi (x, \beta ) := 2 \beta ^{ \frac{3}{2}}~x~exp(- \beta x)\)

    If the trial wave function is not normalized, normalize it.

    \( \int_{0}^{ \infty} \Phi (x, \beta )^{2} dx~ assume,~ \beta > 0 \rightarrow 1\)

    Evaluate the variational energy integral.

    \( E( \beta ) := \int_{0}^{ \infty} \Phi (x, \beta ) (- \frac{1}{2}) \frac{d^2}{dx^2} \Phi (x, \beta ) dx ... |_{simplify}^{assume,~ \beta >0} \rightarrow \frac{1}{2} \beta^{2} + 16 \beta^{2} e^{-4 \beta} + 8 \beta e^{-4 \beta} + 2 e^{- 4 \beta} + \int_{2}^{ \infty} 2 \Phi (x, \beta )^{2} dx\)

    Minimize the energy with respect to \( \beta\):

    \( \beta\) := .3 \( \beta\) := Minimize \((E, \beta )\) \( \beta = 1.053\) \( E( \beta ) = 0.972\)

    Display optimized trial wave function and potential energy:

    Screen Shot 2019-02-11 at 1.36.41 PM.png

    Calculate average position and most probable position of the particle:

    \( \int_{0}^{ \infty} x \Phi (x, \beta )^{2} dx = 1.425\)

    \( \frac{d}{dx} \Phi (x, \beta ) = 0 |_{solve,~x}^{float,~3} \rightarrow \frac{1}{ \beta} = 0.95\)

    Calculate the probability of the particle in the barrier.

    \( \int_{2}^{ \infty} \Phi (x, \beta )^{2} dx = 20.891%\)

    Calculate the potential energy, and the kinetic energy.

    \( V := \int_{2}^{ \infty} 2 \Phi (x, \beta )^{2} dx\) \(V = 0.418\)

    \( T := E ( \beta ) - V\) \( T = 0.554\)


    This page titled 10.12: Variation Method for a Particle in a Semi-Infinite Potential Well is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.