Skip to main content
Chemistry LibreTexts

10.11: Linear Variational Method for a Particle in a Slanted 1D Box

  • Page ID
    136123
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Trial wavefunctions:

    • \( \psi_{1} (x) = \sqrt{2} \sin( \pi x)\)
    • \( \psi_{2} (x) = \sqrt{105} x (1-x)^{2}\)

    Plot trial wavefunctions and potential energy. x = 0, .005 ... 1

    Screen Shot 2019-02-11 at 1.02.14 PM.png

    Evaluate matrix elements:

    \[\begin{align} S_{11} &= \int_{0}^{1} \psi _{1} (x)^{2} dx \\[4pt] &= 1 \end{align} \nonumber \]

    \[\begin{align} S_{12} &= \int_{0}^{1} \psi _{1} (x) \psi _{2} (x) dx\\[4pt] &= 0.9347 \end{align} \nonumber \]

    \[\begin{align} S_{22} &= \int_{0}^{1} \psi _{2} (x)^{2} dx \\[4pt] &= 1 \end{align} \nonumber \]

    \( H_{11} = \int_{0}^{1} \psi _{1} (x) (- \frac{1}{2}) \frac{d^{2}}{dx^{2}} \psi _{1} (x) dx + \int_{0}^{1} \psi _{1} (x)~x~ \psi _{1} (x) dx\) \( H_{11} = 5.4348\)

    \( H_{12} = \int_{0}^{1} \psi _{1} (x) (- \frac{1}{2}) \frac{d^{2}}{dx^{2}} \psi _{2} (x) dx + \int_{0}^{1} \psi _{1} (x)~x~ \psi _{2} (x) dx\) \( H_{12} = 5.0163\)

    \( H_{22} = \int_{0}^{1} \psi _{2} (x) (- \frac{1}{2}) \frac{d^{2}}{dx^{2}} \psi _{2} (x) dx + \int_{0}^{1} \psi _{2} (x)~x~ \psi _{2} (x) dx\) \( H_{22} = 7.375\)

    Solve the secular equations and normalization constraint for the energy and coefficients.

    Seed values for energy and coefficients: E = 5 c1 = .5 c2 = .5

    Given

    \( (H_{11} - E S_{11})c_{1} + (H_{12} - E S_{12})c_{2} = 0\)

    \( (H_{12} - E S_{12})c_{1} + (H_{22} - E S_{22})c_{2} = 0\)

    \( c_{1}^{2} S_{11} + 2 c_{1} c_{2} S_{12} + c_{2}^{2} S_{22} = 1\)

    \({\begin{pmatrix}
    E \\
    c_{1} \\
    c_{2}
    \end{pmatrix}} = Find(E, c_{1}, c_{2})\)

    \({\begin{pmatrix}
    E \\
    c_{1} \\
    c_{2}
    \end{pmatrix}} = {\begin{pmatrix} 5.4328 \\
    0.971\\
    0.031
    \end{pmatrix}}\)

    Compare variational ground state to PIB ground state:

    Screen Shot 2019-02-11 at 1.06.01 PM.png

    Calculate average position of the particle in the box:

    \[ \int_{0}^{1} x \Phi (x)^{2} dx = 0.496 \nonumber \]

    Calculate the probability that the particle is in the left half of the box:

    \[ \int_{0}^{0.5} \Phi (x)^{2} dx = 0.5088 \nonumber \]


    This page titled 10.11: Linear Variational Method for a Particle in a Slanted 1D Box is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.