Skip to main content
Chemistry LibreTexts

10.3: The Variation Theorem in Dirac Notation

  • Page ID
    135909
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The recipe for calculating the expectation value for energy using a trial wave function is,

    \[ \langle E \rangle = \langle \psi | \hat{H} | \psi \rangle \label{1} \]

    Now suppose the eigenvalues of \( \hat{H}\) are denoted by \( |i \rangle\). Then,

    \[ \hat{H} |i \rangle = \varepsilon_{i} |i \rangle = |i \rangle \varepsilon _{i} \label{2} \]

    Next we write \( | \psi \rangle\) as a superposition of the eigenfunctions \( |i \rangle\),

    \[ | \psi \rangle = \sum_{i} |i \rangle \langle I| \psi \rangle \nonumber \]

    and substitute it into Equation \ref{1}.

    \[ \langle E \rangle = \sum_{i} \langle \psi | \hat{H} | i \rangle \langle i | \psi \rangle \nonumber \]

    Making use of Equation \ref{2} yields,

    \[ \langle E \rangle = \sum_{i} \langle \psi |i \rangle \varepsilon_{i} \langle i | \psi \rangle \nonumber \]

    After rearrangement we have,

    \[ \langle E \rangle = \sum_{i} \varepsilon_{i} | \langle i| \psi \rangle |^{2} \nonumber \]

    However, \( | \langle i | \psi \rangle |^{2}\) is the probability that \( \varepsilon_{i}\) will be observed, \(p_i\).

    \[ \langle E \rangle = \sum_{i} \varepsilon_{i} p_{i} \geq \varepsilon_{0} \nonumber \]

    Thus, the expectation value obtained using the trial wave function is an upper bound to the true energy. In other words, in valid quantum mechanical calculations you can't get a lower energy than the true energy.


    This page titled 10.3: The Variation Theorem in Dirac Notation is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.