Skip to main content
Chemistry LibreTexts

10.1: Trial Wavefunctions for Various Potentials

  • Page ID
    135894
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    This is list of functions and the potentials for which they would be suitable trial wave functions in a variation method calculation.

    \( \psi (x, \alpha) = 2 \cdot \alpha ^{ \frac{3}{2}} \cdot x \cdot exp(- \alpha \cdot x)\)

    \( \psi (x, \alpha) = ( \frac{ 128 \cdot \alpha ^{3}}{ \pi})^{ \frac{1}{4}} \cdot exp(- \alpha \cdot x^{2})\)

    • Particle in a gravitational field V(z) = mgz (z = 0 to ∞)
    • Particle confined by a linear potential V(x) = ax (x = 0 to ∞)
    • One-dimensional atoms and ions V(x) = -Z/x (x = 0 to ∞)
    • Particle in semi-infinite potential well V(x) = if[ x \( \leq a, 0, b\)] (x = 0 to ∞)
    • Particle in semi-harmonic potential well V(x) = kx2 (x = 0 to ∞)

    \( \psi (x, \alpha) = ( \frac{ 2 \cdot \alpha}{ \pi})^{ \frac{1}{4}} \cdot exp(- \alpha \cdot x^{2})\)

    • Quartic oscillator V(x) = bx4 (x = -∞ to ∞)
    • Particle in the finite one-dimensional potential well V(x) = if[(x \( \geq\) -1 \( \cdot\) (x \leq 1), 0, 2] (x = -∞ to ∞)
    • 1D Hydrogen atom ground state
    • Harmonic oscillator ground state
    • Particle in V(x) = | x | potential well

    \( \psi (x, \alpha ) = \sqrt{ \alpha} \cdot exp(- \alpha \cdot |x|)\)

    • This wavefunction is discontinuous at x = 0, so the following calculations must be made in momentum space
    • Dirac hydrogen atom V(x) = - \( \Delta\) (x)
    • Harmonic oscillator ground state
    • Particle in V(x) = | x | potential well
    • Quartic oscillator V(x) = bx4 (x = -∞ to ∞)

    \( \psi (x) = \sqrt{30} \cdot x \cdot (1-x)\)

    \( \Gamma (x) = \sqrt{105} \cdot x \cdot (1-x)^{2}\)

    \( \Theta (x) = \sqrt{105} \cdot x^{2} \cdot (1-x)\)

    • Particle in a one-dimensional, one-bohr box
    • Particle in a slanted one-dimensional box
    • Particle in a semi-infinite potential well (change 1 to variational parameter)
    • Particle in a gravitational field (change 1 to variational parameter)

    \( \Phi (r, a) = (a-r)\)

    \( \Phi (r, a) = (a - r)^{2}\)

    \( \Phi (r, a) = \frac{1}{ \sqrt{2 \cdot \pi \cdot a}} \cdot \frac{ \sin \frac{ \pi \cdot r}{a}}{r}\)

    • Particle in a infinite spherical potential well of radius a
    • Particle in a finite spherical potential well (treat a as a variational parameter)

    \( \psi (r, \beta) = ( \frac{2 \cdot \beta}{ \pi})^{ \frac{3}{4}} \cdot exp (- \beta \cdot r^{2})\)

    • Particle in a finite spherical potential well
    • Hydrogen atom ground state
    • Helium atom ground state

    \( \psi (r, \beta) = \sqrt{ \frac{3 \cdot \beta ^{3}}{ \pi ^{3}}} \cdot sech( \beta \cdot r)\)

    • Particle in a finite potential well
    • Hydrogen atom ground state
    • Helium atom ground state

    \( \psi (x, \beta) = \sqrt{ \frac{ \beta}{2}} \cdot sech( \beta \cdot x)\)

    • Harmonic oscillator
    • Quartic oscillator
    • Particle in a gravitational field
    • Particle in a finite potential well

    \( \psi ( \alpha, \beta) = \sqrt{ \frac{12 \alpha ^{3}}{ \pi}} \cdot x \cdot sech( \alpha \cdot x)\)

    • Particle in a semi-infinite potential well
    • Particle in a gravitational field
    • Particle in a linear potential well (same as above) V(x) = ax (x = 0 to ∞)
    • 1D hydrogen atom or one-electron ion

    Some finite potential energy wells.

    V(x) = if[(x \( \geq\) -1 \( \cdot\) (x \( \leq\) 1), 0, V0]

    V(x) = if[(x \( \geq\) -1 \( \cdot\) (x \( \leq\) 1), 0, |x| - 1]

    V(x) = if[(x \( \geq\) -1 \( \cdot\) (x \( \leq\) 1), 0, \( \sqrt{|x| - 1}\)]

    Some semi-infinite potential energy well.

    V(x) = if (x \( \leq\) a, 0, b)

    V(x) = if[(x \( \leq\) 2), 0, \( \frac{5}{x}\)]

    V(x) = if[(x \( \geq\) 2), 0, (x - 2)]

    V(x) = if[(x \( \leq\) 2), 0, \( \sqrt{x-2}\)]


    This page titled 10.1: Trial Wavefunctions for Various Potentials is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.