30.7: Reactions Can Produce Vibrationally Excited Molecules
- Page ID
- 14568
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)As shown at the end of section 30.5, using the center of mass reaction model allows us to state that
\[E_{R_{(int)}} + E_{R_{(trans)}} = E_{P_{(int)}} + E_{P_{(trans)}} \label{30.7.1} \]
where \(E_{R_{(int)}}\) and \(E_{P_{(int)}}\) represent the rotational, vibrational, and electronic energies collectively described as the internal energy of the reactants and the products, respectively. If we apply equation \(\ref{30.7.1}\) to the well-studied gas-phase reaction
\[\ce{F(g) + D_2(g) -> DF(g) + D(g)} \nonumber \]
we can discuss the distribution of a fixed total collision energy between \(E_{P_{(int)}}\) and \(E_{P_{(trans)}}\). Specifically, if we assume that \(\ce{F(g)}\) and \(\ce{D(g)}\) are in their ground electronic states, that \(\ce{D2(g)}\) is in its ground rotational, vibrational, and electronic states, and that \(\ce{DF(g)}\) is in its ground rotational and electronic states, we can focus on the possible vibrational states of the \(\ce{DF(g)}\) that can be populated. Figure \(\PageIndex{1}\) shows the potential energy curve of the process that is described below.
Expanding Equation \ref{30.7.1} to describe this assumed process, we get
\[E_{R_{(rot)}} + E_{R_{(vib)}} + E_{R_{(elec)}} + E_{R_{(trans)}} = E_{P_{(rot)}} + E_{P_{(vib)}} + E_{P_{(elec)}} + E_{P_{(trans)}} \label{30.7.2} \]
Let's assume that \(\ce{D2}\) and \(\ce{DF}\) are harmonic oscillators with \(\tilde{\nu}_{D_2}\) = 2990 cm-1 and \(\tilde{\nu}_{DF}\) = 2907 cm-1 .
If D2 and DF are in their ground electronic states, then \(E_{R_{(elec)}} = -D_e(D_2)\) and \(E_{P_{(elec)}} = -D_e(DF)\). From experiments, we know that
\[-D_e(DF) - (-D_e(D_2)) = -140 kJ/mol \nonumber \]
We also know from experiments, that the activation energy for this reaction is about 6 kJ/mol1, so if we assume that the relative translational energy of the reactants is 7.1 kJ/mol, they will have sufficient energy to overcome the activation energy barrier.
With these data, we can write Equation \(\ref{30.7.2}\) as
\[0 + E_{R_{(vib)}} - D_e(D_2) + 7.1 \dfrac{kJ}{mol} = 0 + E_{P_{(vib)}} - D_e(DF) + E_{P_{(trans)}} \nonumber \]
then
\[E_{R_{(vib)}} + 7.1 \dfrac{kJ}{mol} = E_{P_{(vib)}} + (-D_e(DF) - (-D_e(D_2)) + E_{P_{(trans)}} \nonumber \]
then
\[E_{R_{(vib)}} + 7.1 \dfrac{kJ}{mol} = E_{P_{(vib)}} - 140 \dfrac{kJ}{mol} + E_{P_{(trans)}}\nonumber \]
Because \(\ce{D2}\) is in its ground vibrational state, \(E_{R_{(vib)}} = \dfrac{1}{2}h\nu_{D_2} = 17.9 \dfrac{kJ}{mol}\)
Putting this altogether,
\[17.9 \dfrac{kJ}{mol} + 140 \dfrac{kJ}{mol} + 7.1 \dfrac{kJ}{mol} - E_{P_{(vib)}} = E_{P_{(trans)}} \nonumber \]
\[165 \dfrac{kJ}{mol} - E_{P_{(vib)}} = E_{P_{(trans)}} \label{30.7.3} \]
Equation \(\ref{30.7.3}\) tells us that the reaction will occur only if \(E_{P_{(vib)}}\) is less than 165 kJ/mol because \(E_{P_{(trans)}}\) must be a positive value.
If \(\ce{DF(g)}\) is a harmonic oscillator, then
\[\begin{align*} E_{P_{(vib)}} &= \left( v + \dfrac{1}{2} \right) h\nu_{DF} \\[4pt] &= \left( v + \dfrac{1}{2} \right)(34.8\, kJ/mol) < 165\, kJ/mol \end{align*} \nonumber \]
Vibrational states, \(v\) = 0, 1, 2, 3, and 4 will result in \(E_{P_{(vib)}}\) \(\leq\) 165 kJ/mol. Thus \(\ce{DF(g)}\) molecules in these five vibrational states will be produced by the reaction. Note that under these set of assumptions, the \(\ce{DF}\) molecules produced in different vibrational states will have correspondingly different \(E_{P_{(trans)}} \).
1Average of experimental Ea values listed at https://kinetics.nist.gov/kinetics/ accessed 9/22/2021