# 21.1: Entropy Increases With Increasing Temperature

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$
##### Learning Objectives
• Define entropy and its relation to energy flow.

## Entropy versus temperature

We can put together the first and the second law for a reversible process with no other work than volume ($$PV$$) work and obtain:

$dU= δq_{rev} + δw_{rev} \nonumber$

Entropy is the dispersal of energy and is related to heat:

$δq_{rev}= TdS \nonumber$

Work is related to the change in volume:

$δw_{rev}= -PdV \nonumber$

Plugging these into our expression for $$dU$$ for reversible changes:

$dU= TdS -PdV \nonumber$

We no longer have any path functions in the expression, as $$U$$, $$S$$ and $$V$$ are all state functions. This means this expression must be an exact differential. We can generalize the expression to hold for irreversible processes, but then the expression becomes an inequality:

$dU≤ TdS - PdV \nonumber$

This equality expresses $$U$$ as a function of two variables, entropy and volume: $$U(S,V)$$. $$S$$ and $$V$$ are the natural variables of $$U$$.

### Entropy and heat capacity

At constant volume, $$dU$$ becomes:

$dU=TdS \nonumber$

Recall that internal energy is related to constant volume heat capacity, $$C_V$$:

$C_V=\left(\frac{dU}{dT}\right)_V \nonumber$

Combining these two expressions, we obtain:

$dS=\frac{C_V}{T}dT \nonumber$

Integrating:

$\Delta S=\int_{T_1}^{T_2}{\frac{C_V(T)}{T}dT} \nonumber$

If we know how $$C_V$$ changes with temperature, we can calculate the change in entropy, $$\Delta S$$. Since heat capacity is always a positive value, entropy must increase as the temperature increases. There is nothing to stop us from expressing $$U$$ in other variables, e.g. $$T$$ and $$V$$. In fact, we can derive some interesting relationships if we do.

##### Example 21.1.1
1. Write $$U$$ as a function of $$T$$ and $$V$$.
2. Write $$U$$ as a function of its natural variables.
3. Rearrange (2) to find an expression for $$dS$$.
4. Substitute (1) into (3) and rearrange. This is the definition of $$C_V$$.
5. Write out $$S$$ as a function of $$T$$ and $$V$$.

We can also derive an expression for the change in entropy as a function of constant pressure heat capacity, $$C_P$$. To start, we need to change from internal energy, $$U$$, to enthalpy, $$H$$:

\begin{align*} H &= U + PV \\[4pt] dH &= dU +d(PV) \\[4pt] &= dU + PdV + VdP \end{align*} \nonumber

For reversible processes:

\begin{align*} dH &= dU + PdV + VdP \\[4pt] &= TdS -PdV + PdV + VP \\[4pt] &= TdS + VdP\end{align*} \nonumber

The natural variables of the enthalpy are $$S$$ and $$P$$ (not: $$V$$). A similar derivation as above shows that the temperature change of entropy is related to the constant pressure heat capacity:

$dH=TdS+VdP \nonumber$

At constant pressure:

$dH=TdS+VdP \nonumber$

Recall that:

$C_P=\frac{dH}{dT} \nonumber$

Combining, we obtain:

$dS=\frac{C_P}{T}dT \nonumber$

Integrating:

$\Delta S=\int_{T_1}^{T_2}{\frac{C_P(T)}{T}dT} \nonumber$

This means that if we know the heat capacities as a function of temperature we can calculate how the entropy changes with temperature. Usually it is easier to obtain data under constant $$P$$ conditions than for constant $$V$$, so that the route with $$C_p$$ is the more common one.

21.1: Entropy Increases With Increasing Temperature is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.