# 19.6: The Temperature of a Gas Decreases in a Reversible Adiabatic Expansion

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

We can make the same argument for the heat along C. If we do the three processes A and B+C only to a tiny extent we can write: And now we can integrate from $$V_1$$ to $$V_2$$ over the reversible adiabatic work along B and from $$T_1$$ to $$T_2$$ for the reversible isochoric heat along C. To separate the variables we do need to bring the temperature to the right side of the equation.: The latter expression is valid for a reversible adiabatic expansion of a monatomic ideal gas (say Argon) because we used the $$C_v$$ expression for such a system. We can use the gas law $$PV=nRT$$ to translate this expression in one that relates pressure and volume see Eq 19.23

We can mathematically show that the temperature of a gas decreases during an adiabatic expansion. Assuming an ideal gas, the internal energy along an adiabatic path is:

$\begin{split} d\bar{U}&= \delta q+\delta w \\ &= 0-Pd\bar{V}\\ &= -Pd\bar{V} \end{split} \nonumber$

The constant volume heat capacity is defined as:

${\bar{C}}_V=\left(\frac{\partial\bar{U}}{\partial T}\right)_V \nonumber$

We can rewrite this for internal energy:

$d\bar{U}={\bar{C}}_VdT \nonumber$

Combining these two expressions for internal energy, we obtain:

${\bar{C}}_VdT=-Pd\bar{V} \nonumber$

Using the ideal gas law for pressure of an ideal gas:

${\bar{C}}_VdT=-\frac{RT}{\bar{V}}d\bar{V} \nonumber$

Separating variables:

$\frac{\bar{C}_V}{T}dT=-\frac{R}{\bar{V}}d\bar{V} \nonumber$

This is an expression for an ideal path along a reversible, adiabatic path that relates temperature to volume. To find our path along a PV surface for an ideal gas, we can start in TV surface and convert to a PV surface. Let's go from ($$T_1,V_1$$) to ($$T_2,V_2$$).

$\int_{T1}^{T_2}{\frac{\bar{C}_V}{T}dT=-\int_{\bar{V}_1}^{\bar{V}_2}{\frac{R}{\bar{V}}d\bar{V}}} \nonumber$

$\bar{C}_V\ln{\left(\frac{T_2}{T_1}\right)}=-R\ln{\left(\frac{{\bar{V}}_2}{{\bar{V}}_1}\right)}=R\ln{\left(\frac{{\bar{V}}_1}{{\bar{V}}_2}\right)} \nonumber$

$\ln{\left(\frac{T_2}{T_1}\right)}=\frac{R}{\bar{C}_V}\ln{\left(\frac{\bar{V}_1}{\bar{V}_2}\right)} \nonumber$

$\left(\frac{T_2}{T_1}\right)=\left(\frac{\bar{V}_1}{\bar{V}_2}\right)^{\frac{R}{\bar{C}_V}} \nonumber$

We know that:

$R={\bar{C}}_P-{\bar{C}}_V \nonumber$

$\frac{R}{\bar{C}_V}=\frac{\bar{C}_P-\bar{C}_V}{\bar{C}_V}=\frac{\bar{C}_P}{\bar{C}_V}-1 \nonumber$

$\frac{R}{{\bar{C}}_V}=\gamma-1 \nonumber$

Therefore:

$\left(\frac{T_2}{T_1}\right)=\left(\frac{\bar{V}_1}{\bar{V}_2}\right)^{\gamma-1} \nonumber$

This expression shows that volume and temperature are inversely related. That is, as the volume increase from $$V_1$$ to $$V_2$$, the temperature must decrease from $$T_1$$ to $$T_2$$.

19.6: The Temperature of a Gas Decreases in a Reversible Adiabatic Expansion is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.