Skip to main content
Chemistry LibreTexts

18.2: Most Atoms are in the Ground Electronic State

  • Page ID
    13692
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    Writing the electronic energies as \(E_1, E_2 ,E_3, ...\) with corresponding degeneracies \(g_1, g_2, g_3, \ldots\). The electronic partition function is then given by the following summation

    \[ q_{el} = g_1 e^{E_1/k_BT} + g_2 e^{E_2/k_BT} + g_3 e^{E_3/k_BT} + \ldots \label{Q1}\]

    Usually, the differences in electronic energies are significantly greater than thermal energy \(k_BT\), that is

    \[ k_B T \ll E_1 < E_2 < E_3\]

    If we treating \(E_1\) as the reference value of zero of energy, the electronic partition function (Equation \ref{Q1}) can be approximated as

    \[q_{el} \approx g_1 \label{3.24}\]

    which is the ground state degeneracy of the system.

    Example 18.2.1

    Find the electronic partition of \(\ce{H_2}\) at 300 K.

    Solution

    The lowest electronic energy level of \(\ce{H_2}\) is near \(- 32\; eV\) and the next level is about \(5\; eV\) higher. Taking -32 eV as the zero (or reference value of energy), then

    \[q_{el} = e_0 + e^{-5 eV/ k_BT} + ... \nonumber\]

    At 300 K, T = 0.02\; eV and

    \[ \begin{align*} q_{el} &= 1 + e^{-200} +... \\[4pt] &\approx 1.0 \end{align*}\]

    Where all terms other than the first are essentially 0. This implies that \(q_{el} = 1\).

    The physical meaning of the result from Example 18.2.1 is that only the ground electronic state is generally thermally accessible at room temperature.

    Contributors and Attributions

    • www.chem.iitb.ac.in/~bltembe/pdfs/ch_3.pdf

    18.2: Most Atoms are in the Ground Electronic State is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.