Skip to main content
Chemistry LibreTexts

14.8: The n+1 Rule Applies Only to First-Order Spectra

  • Page ID
    13643
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    The (n+1) Rule, an empirical rule used to predict the multiplicity and, in conjunction with Pascal’s triangle, splitting pattern of peaks in 1H and 13C NMR spectra, states that if a given nucleus is coupled (see spin coupling) to n number of nuclei that are equivalent (see equivalent ligands), the multiplicity of the peak is n+1. eg. 1:

    n+1rule1.png

    The three hydrogen nuclei in 1, \(H_a\), \(H_b\), and \(H_c\), are equivalent. Thus, 1H NMR spectrum of 1 \(H_a\)s only one peak. \(H_a\), \(H_b\), and \(H_c\) are coupled to no hydrogen nuclei. Thus, for \(H_a\), \(H_b\), and \(H_c\), n=0; (n+1) = (0+1) = 1. The multiplicity of the peak of \(H_a\), \(H_b\), and \(H_c\) is one. The peak \(H_a\)s one line; it is a singlet. eg. 2:

    n+1rule2.png

    There are two sets of equivalent hydrogen nuclei in 2:

    • Set 1: \(H_a\)
    • Set 2: \(H_b\), \(H_c\)

    Thus, the 1H NMR spectrum of 2 \(H_a\)s two peaks, one due to \(H_a\) and the other to \(H_b\) and \(H_c\).

    The peak of \(H_a\): There are two vicinal hydrogens to \(H_a\): \(H_b\) and \(H_c\). \(H_b\) and \(H_c\) are equivalent to each other but not to \(H_a\). Thus, for \(H_a\), n=2; (n+1) = (2+1) = 3. The multiplicity of the peak of \(H_a\) is three. The peak \(H_a\)s three lines; from the Pascal’s triangle, it is a triplet.

    The peak of \(H_b\) and \(H_c\): There is only one vicinal hydrogen to \(H_b\) and \(H_c\): \(H_a\). \(H_a\) is not equivalent to \(H_b\) and \(H_c\). Thus, for \(H_b\) and \(H_c\), n=1; (n+1) = (1+1) = 2. The multiplicity of the peak of \(H_b\) and \(H_c\) is two. The peak \(H_a\)s two lines, from the Pascal’s triangle, it is a doublet.

    To determine the multiplicity of a peak of a nucleus coupled to more than one set of equivalent nuclei, apply the (n+1) Rule independently to each other.

    eg:

    n+1rule3.png

    There are three set of equivalent hydrogen nuclei in 3:

    • Set 1: \(H_a\)
    • Set 2: \(H_b\)
    • Set 3: \(H_c\)

    n+1rule4.png

    peak of \(H_a\):

    n+1rule5.png

    multiplicity of the peak of \(H_a = 2 \times 2 = 4\). To determine the splitting pattern of the peak of \(H_a\), use the Pascal’s triangle, based on the observation that, for alkenyl hydrogens, \(J_{cis} > J_{gem}\).

    n+1rule6.png

    The peak of \(H_a\) is a doublet of a doublet.

    peak of \(H_b\):

    n+1rule7.png

    multiplicity of the peak of \(H_b = 2 \times 2 = 4\). To determine the splitting pattern of the peak of \(H_b\), use the Pascal’s triangle, based on the observation that, for alkenyl hydrogens, \(J_{trans} > J_{gem}\).

    n+1rule8.png

    The peak of \(H_b\) is a doublet of a doublet.

    peak of \(H_c\):

    n+1rule9.png

    multiplicity of the peak of \(H_c = 2 \times 2 = 4\). To determine the splitting pattern of the peak of \(H_c\), use the Pascal’s triangle based on the observation that, for alkenyl hydrogens, \(J_{trans} > J_{cis}\).

    n+1rule10.png

    The peak of \(H_c\) is a doublet of a doublet.


    14.8: The n+1 Rule Applies Only to First-Order Spectra is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.