Skip to main content
Chemistry LibreTexts

7.7: Solubility

  • Page ID
    84528
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The maximum solubility of a solute can be determined using the same methods we have used to describe colligative properties. The chemical potential of the solute in a liquid solution can be expressed

    \[ \mu_{B} (solution) = \mu_B^o (liquid) + RT \ln \chi_B \nonumber \]

    If this chemical potential is lower than that of a pure solid solute, the solute will dissolve into the liquid solvent (in order to achieve a lower chemical potential!) So the point of saturation is reached when the chemical potential of the solute in the solution is equal to that of the pure solid solute.

    \[ \mu_B^o (solid) = \mu_B^o (liquid) + RT \ln \chi_B \nonumber \]

    Since the mole fraction at saturation is of interest, we can solve for \(\ln(\chi_B)\).

    \[\ln \chi_B = \dfrac{\mu_B^o (solid) = \mu_B^o (liquid)}{RT} \nonumber \]

    The difference in the chemical potentials is the molar Gibbs function for the phase change of fusion. So this can be rewritten

    \[\ln \chi_B = \dfrac{-\Delta G_{fus}^o}{RT} \nonumber \]

    It would be convenient if the solubility could be expressed in terms of the enthalpy of fusion for the solute rather than the Gibbs function change. Fortunately, the Gibbs-Helmholtz equation gives us a means of making this change. Noting that

    \[ \left( \dfrac{\partial \left( \dfrac{\Delta G}{T} \right)}{\partial T} \right)_p = \dfrac{\Delta H}{T^2} \nonumber \]

    Differentiation of the above expression for \(\ln(\chi_B)\) with respect to \(T\) at constant \(p\) yields

    \[ \left( \dfrac{\partial \ln \chi_B}{\partial T} \right)_p = \dfrac{1}{R} \dfrac{\Delta H_{fus}}{T^2} \nonumber \]

    Separating the variables puts this into an integrable form that can be used to see how solubility will vary with temperature:

    \[ \int_0^{\ln \chi_B} d \ln \chi_B = \dfrac{1}{R} \int_{T_f}^{T} \dfrac{\Delta H_{fus} dT}{T^2} \nonumber \]

    So if the enthalpy of fusion is constant over the temperature range of \(T_f\) to the temperature of interest,

    \[ \ln \chi_B = \dfrac{\Delta H_{fus}}{R} \left( \dfrac{1}{T_f} - \dfrac{1}{T} \right) \nonumber \]

    And \(\chi_B\) will give the mole fraction of the solute in a saturated solution at the temperature \(T\). The value depends on both the enthalpy of fusion, and the normal melting point of the solute.


    This page titled 7.7: Solubility is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.

    • Was this article helpful?