# 7.2: Partial Molar Volume

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

The partial molar volume of compound A in a mixture of A and B can be defined as

$V_A = \left (\dfrac{\partial V}{\partial n_A} \right)_{p,T,n_B} \nonumber$

Using this definition, a change in volume for the mixture can be described using the total differential of $$V$$:

$dV = \left( \dfrac{\partial V}{\partial n_A}\right)_{p,T,n_B} dn_A + \left( \dfrac{\partial V}{\partial n_B}\right)_{p,T,n_A} dn_B \nonumber$

or

$dV = V_a \, dn_A + V_b\,dn_B \nonumber$

and integration yields

$V = \int _0^{n_A} V_a \, dn_A + \int _0^{n_B} V_b\,dn_B \nonumber$

$V = V_a \, n_A + V_b\,n_B \nonumber$

This result is important as it demonstrates an important quality of partial molar quantities. Specifically, if $$\xi_i$$ represents the partial molar property $$X$$ for component i of a mixture, The total property $$X$$ for the mixture is given by

$X = \sum_{i} \xi_in_i \nonumber$

It should be noted that while the volume of a substance is never negative, the partial molar volume can be. An example of this appears in the dissolution of a strong electrolyte in water. Because the water molecules in the solvation sphere of the ions are physically closer together than they are in bulk pure water, there is a volume decrease when the electrolyte dissolves. This is easily observable at high concentrations where a larger fraction of the water in the sample is tied up in solvation of the ions.

This page titled 7.2: Partial Molar Volume is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Patrick Fleming.