Skip to main content
Chemistry LibreTexts

16.12: Partial Derivatives

  • Page ID
    107071
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    • \(\frac{\partial^2 z}{\partial x \partial y}=\frac{\partial^2 z}{\partial y \partial x}\)
    • \(\left(\frac{\partial y}{\partial x}\right)_{z,u}=\frac{1}{\left(\partial x/\partial y\right)_{z,u}}\)
    • \(\left(\frac{\partial y}{\partial x}\right)_{z}\left(\frac{\partial x}{\partial z}\right)_{y}\left(\frac{\partial z}{\partial y}\right)_{x}=-1\)
    • \(du=\left(\frac{\partial u}{\partial x_1}\right)_{x_2,x_3...}dx_1+\left(\frac{\partial u}{\partial x_2}\right)_{x_1,x_3...}dx_2+\left(\frac{\partial u}{\partial x_3}\right)_{x_1,x_2...}dx_3\)
    • Given \(u=u(x,y)\), \(x=x(\theta,r)\) and \(y=y(\theta,r)\)

    \[ \begin{array}{c} \left ( \frac{\partial u}{\partial r} \right )_\theta=\left ( \frac{\partial u}{\partial x} \right )_y\left ( \frac{\partial x}{\partial r} \right )_\theta+\left ( \frac{\partial u}{\partial y} \right )_x\left ( \frac{\partial y}{\partial r} \right )_\theta \\ \left ( \frac{\partial u}{\partial \theta} \right )_r=\left ( \frac{\partial u}{\partial x} \right )_y\left ( \frac{\partial x}{\partial \theta} \right )_r+\left ( \frac{\partial u}{\partial y} \right )_x\left ( \frac{\partial y}{\partial \theta} \right )_r \end{array} \nonumber\]


    This page titled 16.12: Partial Derivatives is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.