Skip to main content
Chemistry LibreTexts

19.3: Distribution of Results for Multiple Trials with Many Possible Outcomes

  • Page ID
    151783
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    It is now easy to extend our results to multiple trials with any number of outcomes. Let the outcomes be \(A\), \(B\), \(C\), ., \(Z\), for which the probabilities in a single trial are \(P_A\), \(P_B\), \(P_C\),\(P_Z\). We again want to write an equation for the total probability after \(n\) trials. We let \(n_A\), \(n_B\), \(n_C\),\(n_Z\) be the number of \(A\), \(B\), \(C\),, \(Z\) outcomes exhibited in \(n_A+n_B+n_C+...+n_Z=n\) trials. If we do not care about the order in which the outcomes are obtained, the probability of \(n_A\), \(n_B\), \(n_C\),, \(n_Z\) outcomes in \(n\) trials is

    \[C\left(n_A,n_B,n_C,\dots ,n_Z\right)P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z \nonumber \]

    and the total probability sum is

    \[1={\left(P_A+P_B+P_C+\dots +P_Z\right)}^n=\sum_{n_I}{C\left(n_A,n_B,n_C,\dots ,n_Z\right)P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z} \nonumber \]

    where the summation is to be carried out over all combinations of integer values for \(n_A\), \(n_B\), \(n_C\),, \(n_Z\) consistent with \(n_A+n_B+n_C+...+n_Z=n\).

    Let one of the terms for \(n_A\) \(A\)-outcomes, \(n_B\) \(B\)-outcomes, \(n_C\) \(C\)-outcomes, , \(n_Z\)\({}_{\ }\)\(Z\)-outcomes, be

    \[\left(P_{A,a}P_{A,b}\dots P_{A,f}\right)\left(P_{B,g}P_{B,h}\dots P_{B,m}\right)\times \left(P_{C,p}P_{C,q}\dots P_{C,t}\right)\dots \left(P_{Z,u}P_{Z,v}\dots P_{Z,z}\right) \nonumber \]

    where there are \(n_A\) indices in the set \(\{a,\ b,\ \dots ,\ f\}\), \(n_B\) indices in the set \(\{g,\ h,\ \dots ,\ m\}\), \(n_C\) indices in the set \(\{p,\ q,\ \dots ,\ t\}\), , and \(n_Z\) indices in the set \(\{u,\ v,\ \dots ,\ z\}\). There are \(n_A!\) ways to order the \(A\)-outcomes, \(n_B!\) ways to order the \(B\)-outcomes, \(n_C!\) ways to order the \(C\)-outcomes, , and \(n_Z!\) ways to order the \(Z\)-outcomes. So, there are \(n_A!n_B!n_C!\dots n_Z!\) ways to order \(n_A\) \(A\)-outcomes, \(n_B\) \(B\)-outcomes, \(n_C\) \(C\)-outcomes, , and \(n_Z\) \(Z\)-outcomes. The same is true for any other distinguishable combination; for every distinguishable combination belonging to the population set \(\{n_A\), \(n_B\), \(n_C\),, \(n_Z\}\) there are \(n_A!n_B!n_C!\dots n_Z!\) indistinguishable permutations. Again, we can express this result as the general relationship:

    total number of permutations = (number of distinguishable combinations)\({}_{\ }\)\({}_{\times }\) (number of indistinguishable permutations for each distinguishable combination)

    so that

    \[n!=n_A!n_B!n_C!\dots n_Z!C\left(n_A,n_B,n_C,\dots ,n_Z\right) \nonumber \]

    and \[C\left(n_A,n_B,n_C,\dots ,n_Z\right)=\frac{n!}{n_A!n_B!n_C!\dots n_Z!} \nonumber \]

    Equivalently, we can construct a sum, \(T\), in which we add up all of the \(n!\) permutations of \(P_{A,a}\) factors for \(n_A\) \(A\)-outcomes, \(P_{B,b}\) factors for \(n_B\) \(B\)-outcomes, \(P_{C,c}\) factors for \(n_C\) \(C\)-outcomes, , and \(P_{Z,z}\) factors for \(n_Z\) \(Z\)-outcomes. The value of each term in \(T\) will be \(P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z\). So we have

    \[T=n!P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z \nonumber \]

    \(T\) will contain all \(C\left(n_A,n_B,n_C,\dots ,n_Z\right)\) of the \(P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z\)-valued products (distinguishable combinations) that are a part of the total-probability sum. Moreover, \(T\) will also include all of the \(n_A!n_B!n_C!\dots n_Z!\) indistinguishable permutations of each of these \(P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z\)-valued products. Then we also have

    \[T=n_A!n_B!n_C!\dots n_Z!C\left(n_A,n_B,n_C,\dots ,n_Z\right) \nonumber \] \[\times P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z \nonumber \]

    Equating these two expressions for\(\ T\) gives us the number of \(P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z\)-valued products

    \[n!P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z=n_A!n_B!n_C!\dots n_Z! \nonumber \] \[\times C\left(n_A,n_B,n_C,\dots ,n_Z\right)P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z \nonumber \]

    and hence,

    \[C\left(n_A,n_B,n_C,\dots ,n_Z\right)=\frac{n!}{n_A!n_B!n_C!\dots n_Z!} \nonumber \]

    In the special case that \(P_A=P_B=P_C=\dots =P_Z\), all of the products \(P^{n_A}_AP^{n_B}_BP^{n_C}_C\dots P^{n_Z}_Z\) have the same value. Then, the probability of any set of outcomes, \(\{n_A,n_B,n_C,\dots ,n_Z\}\), is proportional to \(C\left(n_A,n_B,n_C,\dots ,n_Z\right)\).


    This page titled 19.3: Distribution of Results for Multiple Trials with Many Possible Outcomes is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.