# 2.7: The Ideal Gas Constant and Boltzmann's Constant

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

Having developed the ideal gas equation and analyzed experimental results for a variety of gases, we will have found the value of R. It is useful to have R expressed using a number of different energy units. Frequently useful values are

\begin{aligned} R & = 8.314 \text{ Pa m}^{3} \text{ K}^{-1} \text{ mol}^{-1} \\ ~ & = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} \\ ~ & = 0.08314 \text{ L bar K}^{-1} \text{ mol}^{-1} \\ ~ & = 1.987 \text{ cal K}^{-1} \text{ mol}^{-1} \\ ~ & = 0.08205 \text{ L atm K}^{-1} \text{ mol}^{-1} \end{aligned}

We also need the gas constant expressed per molecule rather than per mole. Since there is Avogadro’s number of molecules per mole, we can divide any of the values above by $$\overline{N}$$ to get $$R$$ on a per-molecule basis. Traditionally, however, this constant is given a different name; it is Boltzmann’s constant, usually given the symbol $$k$$.

$k={R}/{\overline{N}}=1.381\times {10}^{-23}\ \mathrm{J}\ {\mathrm{K}}^{-1}\ {\mathrm{molecule}}^{-1}$

This means that we can also write the ideal gas equation as $$PV=nRT=n\overline{N}kT$$. Because the number of molecules in the sample, $$N$$, is $$N=n\overline{N}$$, we have

$PV=NkT.$

2.7: The Ideal Gas Constant and Boltzmann's Constant is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to conform to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.