Skip to main content
Chemistry LibreTexts

3.7: The Morse Oscillator

  • Page ID
    60522
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    The Morse oscillator model is often used to go beyond the harmonic oscillator approximation. In this model, the potential \(E_j(R)\) is expressed in terms of the bond dissociation energy \(D_e\) and a parameter a related to the second derivative k of \(E_j(R)\) at \(R_e k = \frac{d^2E_j}{dR^2} = 2a^2D_e\) as follows:

    \[ E_j(R) - E_j(R_e) = D_e \left[ 1 - e^{-a(R-R_e)} \right]^2. \]

    The Morse oscillator energy levels are given by

    \[ E^0_{j,v} = E_j(R_e) + \hbar \dfrac{\sqrt{k}}{\mu}\left( v+\dfrac{1}{2} \right) - \dfrac{\hbar^2}{4}\left( \dfrac{k}{\mu D_e} \right) \left( v + \dfrac{1}{2} \right)^2\]

    the corresponding eigenfunctions are also known analytically in terms of hypergeometric functions (see, for example, Handbook of Mathematical Functions , M. Abramowitz and I. A. Stegun, Dover, Inc. New York, N. Y. (1964)). Clearly, the Morse solutions display anharmonicity as reflected in the negative term proportional to \((v+\dfrac{1}{2})^2.\)

    Contributors and Attributions


    This page titled 3.7: The Morse Oscillator is shared under a not declared license and was authored, remixed, and/or curated by Jack Simons.

    • Was this article helpful?