Skip to main content
Chemistry LibreTexts

1.3: Third Order Response

  • Page ID
    298951
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Since \(R^{(2)}\) orientationally averages to zero for isotropic systems, the third-order nonlinear response described the most widely used class of nonlinear spectroscopies.

    \[ R^{(3)}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=\left(\frac{i}{\hbar}\right)^{3} \theta\left(\tau_{3}\right) \theta\left(\tau_{2}\right) \theta\left(\tau_{1}\right) \operatorname{Tr}\left\{\left[\mu_{I}\left(\tau_{1}+\tau_{2}+\tau_{3}\right), \mu_{I}\left(\tau_{1}+\tau_{2}\right)], \mu_{I}\left(\tau_{1}\right)], \mu_{I}(0)\right] \rho_{e q}\right\} \]

    \[ R^{(3)}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)=\left(\frac{i}{\hbar}\right)^{3} \theta\left(\tau_{3}\right) \theta\left(\tau_{2}\right) \theta\left(\tau_{1}\right) \sum_{\alpha=1}^{4}\left[R_\alpha \left(\tau_{1}+\tau_{2}+\tau_{3}\right) - R^*_\alpha \left(\tau_{1}+\tau_{2}+\tau_{3}\right)\right] \]

    Here the convention for the time-ordered interactions with the density matrix is R1 = ket / ket / ket ; R2 = bra / ket / bra ; R3 = bra / bra / ket ; and R4ket / bra / bra . In the eigenstate representation, the individual correlation functions can be explicitly written in terms of a sum over all possible intermediate states (a,b,c,d)

    \[\begin{array}{l}
    R_{1}=\sum_{a, b, c, d} p_{a}\left\langle\mu_{a d}\left(\tau_{1}+\tau_{2}+\tau_{3}\right) \mu_{d c}\left(\tau_{1}+\tau_{2}\right) \mu_{c b}\left(\tau_{1}\right) \mu_{b a}(0)\right\rangle \\
    R_{2}=\sum_{a, b, c, d} p_{a}\left\langle\mu_{a d}(0) \mu_{d c}\left(\tau_{1}+\tau_{2}\right) \mu_{c b}\left(\tau_{1}+\tau_{2}+\tau_{3}\right) \mu_{b a}\left(\tau_{1}\right)\right\rangle \\
    R_{3}=\sum_{a, b, c, d} p_{a}\left\langle\mu_{a d}(0) \mu_{d c}\left(\tau_{1}\right) \mu_{c b}\left(\tau_{1}+\tau_{2}+\tau_{3}\right) \mu_{b a}\left(\tau_{1}+\tau_{2}\right)\right\rangle \\
    R_{4}=\sum_{a, b, c, d} p_{a}\left\langle\mu_{a d}\left(\tau_{1}\right) \mu_{d c}\left(\tau_{1}+\tau_{2}\right) \mu_{c b}\left(\tau_{1}+\tau_{2}+\tau_{3}\right) \mu_{b a}(0)\right\rangle
    \end{array} \]


    This page titled 1.3: Third Order Response is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.