Skip to main content
Chemistry LibreTexts

16.10: Definite integrals

  • Page ID
    107069
    • \(\int\limits_{0}^{\infty }xe^{-x^2}dx=\frac{1}{2}\)
    • \(\int\limits_{0}^{\infty }e^{-ax}dx=\frac{1}{a}\) ,\(a>0\)
    • \(\int\limits_{0}^{\infty }\sqrt{x}e^{-ax}dx=\frac{1}{2a}\sqrt{\frac{\pi}{a}}\)
    • \(\int\limits_{0}^{\infty }x^{2n+1}e^{-ax^2}dx=\frac{n!}{2a^{n+1}}\) ,\(a>0\)
    • \(\int\limits_{0}^{\infty }x^{2n}e^{-ax^2}dx=\frac{1.3.5...(2n-1)}{2^{n+1}a^{n}}\sqrt{\frac{\pi}{a}}\)
    • \(\int\limits_{0}^{\infty }x^{n}e^{-ax}dx=\frac{n!}{a^{n+1}}\), \(a>0\), \(n\) positive integer
    • Was this article helpful?