Skip to main content
Chemistry LibreTexts

1.5: Exercises

  • Page ID
    106802
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    To see if you are on track, solve the following exercises using only the formula sheet (no calculators, computers, books, etc!).

    1. Draw the straight line that has a \(y\)-intercept of 3/2 and a slope of 1/2.
    2. Express \(\frac{3}{4} - \frac{2}{3} + 1\) as a single fraction.
    3. Simplify \((a -4a^3)/a^{-2}\).
    4. Express \(\ln 8 − 5 \ln 2\) as the logarithm of a single number.
    5. Given \(\ln P = − \frac{a}{RT} + b \ln T + c\), where \(a\), \(b\), \(c\) and \(R\) are constants, obtain \(\frac{d(\ln P)}{dT}\)
    6. Obtain \(\frac{dy}{dx}\)
      1. \(y = \sin xe^{mx}\) (m is a constant).
      2. \(y = \frac{1}{\sqrt{1−x^2}}\)
    7. Obtain the first, second and third derivatives of
      1. \(y = e^{−2x}\)
      2. \(y = \cos(2x)\)
      3. \(y = 3 + 2x − 4x^2\)
    8. Evaluate \(\int_0^{\pi} \cos 3 \theta d \theta\).
    9. Use the properties of integrals and your previous result to evaluate \(\int_{\pi}^0 \cos 3 \theta d \theta\). What about \(\int_0^{\pi/4} \cos 3 \theta d \theta + \int_{\pi/4}^{\pi} \cos 3 \theta d \theta\)?
    10. Given \(f(x) = \left\{\begin{matrix} 0 & \text{if } x<0 \\ 3+2x & \text{if } 0 <x<1 \\ 0 & \text{if } x>1 \end{matrix}\right.\) Sketch \(f(x)\) and calculate \(\int_{- \infty}^{\infty} f(x) dx\)
    11. What is the value of this integral? \(\int_{- \infty}^{\infty} xe^{-x^2} dx\)
    12. Sketch \(\sin(x/2)\). What is the period of the function?
    13. The plots below (Figure \(\PageIndex{1}\)) represent the following functions: \(y = 3e^{−x/2}, ~ y = 3e^{−x}, ~ y = 3e^{−2x}\) and \(y = 2e^{−2x}\). Which one is which?
    Screen Shot 2019-10-18 at 2.49.36 PM.png
    Figure for problem 13. (CC BY-NC-SA; Marcia Levitus)

    This page titled 1.5: Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Marcia Levitus via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.