Skip to main content
Chemistry LibreTexts

12.7: Relation to Spectra

  • Page ID
    5301
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Suppose that \( F_e (t) \) is a monochromatic field

    \[ F_e(t) = F_{\omega}e^{i\omega t}e^{\epsilon t} \nonumber \]

    where the parameter \(\epsilon \) insures that field goes to 0 at \( { t = - \infty } \). We will take \( {\epsilon\rightarrow 0^+ } \) at the end of the calculation. The expectation value of \(B\) then becomes

    \[ \begin{align*} \langle B(t)\rangle &= \langle B\rangle _0 + \int_{-\infty}^t\;ds\;\Phi_{BB}(t-s)F_{\omega}e^{i\omega s}e^{\epsilon s} \\[4pt] &=\langle B\rangle _0 + F_{\omega}e^{(i\omega + \epsilon)t} \int_0^{\infty}d\tau\Phi_{BB}(\tau)e^{-i(\omega-i\epsilon)\tau} \end{align*}\]

    where the change of integration variables \( {\tau=t-s } \) has been made.

    Define a frequency-dependent susceptibility by

    \[ \chi_{BB}(\omega-i\epsilon) = \int_0^{\infty}d\tau \Phi_{BB}(\tau) e^{-i(\omega-i\epsilon)\tau} \nonumber \]

    then

    \[ \langle B(t)\rangle = \langle B\rangle _0 + F_{\omega}e^{i\omega t}e^{\epsilon t}\chi_{BB}(\omega-i\epsilon) \nonumber \]

    If we let \(z=\omega-i\epsilon \), then we see immediately that

    \[ \chi_{BB}(z) = \int_0^{\infty}d\tau\;\Phi_{BB}(\tau) e^{-iz\tau} \nonumber \]

    i.e., the susceptibility is just the Laplace transform of the after effect function or the time correlation function.

    Recall that

    \[ \begin{align*} \Phi_{AB}(t) &= {i\over\hbar}\langle [A(t),B(0)]\rangle _0 \\[4pt] &= {i \over \hbar}\langle[e^{iH_0t/\hbar} Ae^{-iH_0t\hbar},B]\rangle _0 \end{align*} \]

    Under time reversal, we have

    \[ \begin{align*} \Phi_{AB}(-t) &= {i \over \hbar} \langle \left[e^{-iH_0t/\hbar}Ae^{iH_0t/\hbar},B\right]\rangle _0 \\[4pt] &= { {i \over \hbar} \langle \left(e^{-iH_0t/\hbar}Ae^{iH_0t/\hbar}B -Be^{-iH_0t/\hbar}Ae^{iH_0t/\hbar}\right)\rangle _0 } \\[4pt] &=  {i \over \hbar} \langle \left(Ae^{iH_0t/\hbar}Be^{-iH_0t/\hbar} -e^{iH_0t/\hbar}Be^{-iH_0t/\hbar}A\right)\rangle _0 \\[4pt] &= {i \over \hbar} \langle \left(AB(t)-B(t)A\right)\rangle _0 \\[4pt] &= -{i \over \hbar} \langle \left[B(t),A\right]\rangle \\[4pt] &= -\Phi_{BA}(t)  \end{align*} \]

    Thus,

    \[ \Phi_{AB}(-t) = -\Phi_{BA}(t) \nonumber \]

    and if \(A = B \), then

    \[ \Phi_{BB}(-t) = -\Phi_{BB}(t) \nonumber \]

    Therefore

    \[ \begin{align*} \chi_{BB}(\omega) &= \lim_{\epsilon\rightarrow 0^+}\int_0^{\infty} dt\;e^{-i(\omega-i\epsilon t)}\Phi_{BB}(t) \\[4pt] &=\lim_{\epsilon\rightarrow 0^+}\int_0^{\infty}dt\;e^{-\epsilon t}\left[\Phi_{BB}(t)\cos\omega t - i\Phi_{BB}(t)\sin\omega t\right] \\[4pt] &={\rm Re}(\chi_{BB}(\omega)) - i{\rm Im}(\chi_{BB}(\omega)) \end{align*}\]

    From the properties of \( \Phi_{BB}(t) \) it follows that

    \[ \begin{align*} {\rm Re}(\chi_{BB}(\omega) &= {\rm Re}(\chi_{BB}(-\omega) \\[4pt] {\rm Im}(\chi_{BB}(\omega) &= -{\rm Im}(\chi_{BB}(-\omega) \end{align*} \]

    so that \({\rm Im}(\chi_{BB}(\omega)) \) is positive for \( { \omega > 0 } \) and negative for \( { \omega < 0 } \). It is a straightforward matter, now, to show that the energy difference \( Q (\omega ) \) derived in the lecture from the Fermi golden rule is related to the susceptibility by

    \[ Q(\omega) = 2\omega\vert F_{\omega}\vert^2{\rm Im}(\chi_{BB}(\omega)) \nonumber \]


    This page titled 12.7: Relation to Spectra is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.