11.1.2: Doing the Path Integral - the Free Particle
- Page ID
- 5270
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The density matrix for the free particle
\[H={P^2 \over 2m} \nonumber \]
will be calculated by doing the discrete path integral explicitly and taking the limit \(P \rightarrow \infty \) at the end.
The density matrix expression is
\[ \rho(x,x';\beta) = \lim_{P\rightarrow\infty }\left({mP \over 2\pi \beta \hbar^2} \right )^{P/2} \int dx_2 \cdots dx_P exp \left [ - {mP \over 2 \beta \hbar^2} \sum_{i=1}^P(x_{i+1}-x_i)^2\right] \vert _{x_1=x,x_{P+1}=x'} \nonumber \]
Let us make a change of variables to
\[ {u_1} = x_1 \nonumber \]
\[ {u_k} = x_k - \tilde{x}_k\]
\[ {\tilde {x}_k} = {(k-1)x_{k+1}+x_1 \over k} \nonumber \]
The inverse of this transformation can be worked out explicitly, giving
\[ {x_1} = u_1 \nonumber \]
\[ {x_k} = \sum_{l=1}^{P+1}{k-1 \over l-1}u_l + {P-k+1 \over P}u_1 \nonumber \]
The Jacobian of the transformation is simply
\[ J = {\rm det}\left(\matrix{1 & -1/2 & 0 & 0 & \cdots \cr0 & 1 & -2/3 & 0 & \cdots \cr 0 & 0 & 1 & -3/4 & \cdots \cr 0 & 0 & 0 & 1 & \cdots \cr\cdot & \cdot & \cdot & \cdot & \cdot & \cdots}\right)=1 \nonumber \]
Let us see what the effect of this transformation is for the case \(P = 3 \). For \(P = 3 \), one must evaluate
\[ (x_1-x_2)^2 + (x_2-x_3)^2 + (x_3-x_4)^2 = (x-x_2)^2 + (x_2-x_3)^2 + (x_3-x')^2 \nonumber \]
According to the inverse formula,
\[ {x_1} = {u_1}\]
\[ {x_2} = u_2 + {1 \over 2}u_3 + {1 \over 3}x' + {2 \over 3}x\]
\[ x_3 = u_3 + {2 \over 3}x' + {1 \over 3}x \]
Thus, the sum of squares becomes
\[ {(x-x_2)^2 + (x_2-x_3)^2 + (x_3-x')^2 } = ( 2u_2^2 + {3 \over 2}u_3^2 + {1 \over 3}(x-x')^2 = {2 \over 2-1}u_2^2 + {3 \over 3-1}u_3^2 + {1 \over 3}(x-x')^2 \]
From this simple example, the general formula can be deduced:
\[ \sum_{i=1}^P(x_{i+1}-x_i)^2 = \sum_{k=2}^P {k \over k-1}u_k^2 +{1 \over P}(x-x')^2 \nonumber \]
Thus, substituting this transformation into the integral gives
\[ \rho(x,x';\beta) = \left({m \over 2\pi\beta\hbar^2}\right)^{1/2} \prod _{k=2}^P \left ( {m_k P \over 2\pi \beta \hbar^2 } \right )^{1/2} \int du_2 \cdots du_P exp \left [ - \sum _{k=2}^P {m_kP \over 2\beta \hbar^2} u_k^2 \right] exp \left[-{m \over 2\beta\hbar^2}(x-x')^2\right] \nonumber \]
where
\[ m_k = {k \over k-1}m \nonumber \]
and the overall prefactor has been written as
\[ \left({mP \over 2\pi\beta\hbar^2}\right)^{P/2} =\left({m \over 2 \pi \beta \hbar^2} \right )^{1/2} \prod _{k=2}^P\left({m_k P \over 2\pi\beta\hbar^2}\right)^{1/2} \nonumber \]
Now each of the integrals over the \(u \) variables can be integrated over independently, yielding the final result
\[ \rho(x,x';\beta) = \left({m \over 2\pi\beta\hbar^2}\right)^{1/2}\exp\left[-{m \over 2\beta\hbar^2}(x-x')^2\right] \nonumber \]
In order to make connection with classical statistical mechanics, we note that the prefactor is just \({1 \over \lambda} \), where \(\lambda \)
\[ \lambda = \left({2\pi\beta\hbar^2 \over m}\right)^{1/2} =\left({\beta h^2 \over 2\pi m}\right)^{1/2} \nonumber \] is the kinetic prefactor that showed up also in the classical free particle case. In terms of \(\lambda \), the free particle density matrix can be written as
\[ \rho(x,x';\beta) = {1 \over \lambda}e^{-\pi(x-x')^2/\lambda^2} \nonumber \]
Thus, we see that \(\lambda \) represents the spatial width of a free particle at finite temperature, and is called the "thermal de Broglie wavelength.''