# 7.1: General Formulation of Distribution Functions

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Recall the expression for the configurational partition function:

$Z_N = \int d{\textbf r}_1\cdots d{\textbf r}_N e^{-\beta U(r_1,...,r_N)} \nonumber$

Suppose that the potential $$U$$ can be written as a sum of two contributions

$U({{\textbf r}_1,...,{\textbf r}_N}) = U_0({{\textbf r}_1,...,{\textbf r}_N}) + U_1({{\textbf r}_1,...,{\textbf r}_N}) \nonumber$

where $$U_1$$ is, in some sense, small compared to $$U_0$$. An extra bonus can be had if the partition function for $$U_0$$ can be evaluated analytically.

Let

$Z_N{^{(0)}}= \int {d{\textbf r}_1\cdots d{\textbf r}_N}e^{-\beta U_0({r_1,...,r_N})} \nonumber$

Then, we may express $$Z_N$$ as

\begin{align*} Z_N &= {Z_N{^{(0)}}\over Z_N{^{(0)}}}\int d{\textbf r}_1\cdots d{\textbf r}_Ne^{-\beta U_0(r_1,...,r_N)}e^{-\beta U_1(r_1,...,r_N)} \\[4pt] &= Z_N{^{(0)}}\langle e^{-\beta U_1(r_1,...,r_N)}\rangle_0 \end{align*}

where $$\langle \cdots \rangle _0$$ means average with respect to $$U_0$$ only. If $$U_1$$ is small, then the average can be expanded in powers of $$U_1$$:

$\langle e^{-\beta U_1}\rangle_0 = { 1 - \beta \langle U_1\rangle_0 +{\beta^2 \over 2!} \langle U_1^2 \rangle_0 - {\beta^3 \over 3!}\langle U_1^3 \rangle_0 +\cdots} \nonumber$

$= { \sum_{k=0}^{\infty} {(-\beta)^k \over k!}\langle U_1^k \rangle_0} \nonumber$

The free energy is given by

$A(N,V,T) = -{1 \over \beta}\ln \left({Z_N \over N!\lambda^{3N}}\right) = -{1 \over \beta}\ln \left({Z_N^{(0)} \over N!\lambda^{3N}}\right)-- {1 \over \beta}\ln \langle e^{-\beta U_1}\rangle_0 \nonumber$

Separating $$A$$ into two contributions, we have

$A(N,V,T) = A{^{(0)}}(N,V,T) + A{^{(1)}}(N,V,T) \nonumber$

where $$A^{(0)}$$ is independent of $$U_1$$ and is given by

$A{^{(0)}}(N,V,T) = -{1 \over \beta}\ln \left({Z_N{^{(0)}}\over N!\lambda^{3N}}\right) \nonumber$

and

\begin{align*} A{^{(1)}}(N,V,T) &= -{1 \over \beta}\ln \langle e^{-\beta U_1}\rangle_0 \\[4pt] &=-{1 \over \beta}\ln \langle \sum_{k=0}^{\infty}{(-\beta)^k \over k!}\langle U_1^k \rangle_0 \end{align*}

We wish to develop an expansion for $$A^{(1)}$$ of the general form

$A{^{(1)}}= \sum_{k=1}^{\infty} {(-\beta)^{k-1} \over k!}\omega_k \nonumber$

where $${\omega _k}$$ are a set of expansion coefficients that are determined by the condition that such an expansion be consistent with $$\ln\langle \sum_{k=0}^{\infty} (-\beta)^k \langle U_1^k\rangle_0 /k!$$.

Using the fact that

$\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k-1} {x^k \over k} \nonumber$

we have that

\begin{align*} -{1 \over \beta}\ln \left(\sum_{k=0}^{\infty}{(-\beta)^k \over k!} \langle U_1^k \rangle_0\right) &= -{1 \over \beta}\ln \left(1 + \sum_{k=0}^{\infty}{(-\beta)^k \over k!} \langle U_1^k \rangle_0\right) \\[4pt] &= { -{1 \over \beta}\sum_{k=1}^{\infty}(-1)^{k-1}{1 \over k}\left(\sum_{l=1}^{\infty}{(-\beta)^l \over l!}\langle U_1^l\rangle_0\right)^k } \end{align*}

Equating this expansion to the proposed expansion for $$A^{(1)}$$, we obtain

$\sum_{k=1}^{\infty}(-1)^{k-1}{1 \over k}\left(\sum_{l=1}^{\infty} {(-\beta)^l \over l!} \langle U^l_1 \rangle _0\right)^k = \sum_{k=1}^{\infty} (-\beta)^k {\omega_k \over k!} \nonumber$

This must be solved for each of the undetermined parameters $${\omega_k}$$, which can be done by equating like powers of $$\beta$$ on both sides of the equation. Thus, from the $$\beta ^1$$ term, we find, from the right side:

${\rm Right\ Side}:\;\;\;-{\beta \omega_1 \over 1!} \nonumber$

and from the left side, the $$j = 1$$ and $$k = 1$$ term contributes:

${\rm Left\ Side}:\;\;\;-{\beta \langle U_1 \rangle_0 \over 1!} \nonumber$

from which it can be easily seen that

$\omega_1 = \langle U_1 \rangle_0 \nonumber$

Likewise, from the $$\beta ^2$$ term,

${\rm Right\ Side}:\;\;\; {\beta^2 \over 2!}\omega_2 \nonumber$

and from the left side, we see that the $$l = 1, k = 2$$ and $$l = 2, k = 1$$ terms contribute:

${\rm Left\ Side}:\;\;\; {\beta^2 \over 2}\left(\langle U_1^2 \rangle_0- \langle U_1 \rangle_0^2\right) \nonumber$

Thus,

$\omega_2 = \langle U_1^2 \rangle_0 -\langle U_1\rangle_0^2 \nonumber$

For $$\beta ^3$$, the right sides gives:

${\rm Right\ Side}:\;\;\; -{\beta^3 \over 3!}\omega_3 \nonumber$

the left side contributes the $$l = 1, k = 3, k = 2, l = 2$$ and $$l = 3, k = 1$$ terms:

${\rm Left\ Side}: -{\beta^3 \over 6}\langle U_1^3 \rangle + (-1)^2 {1 \over 3}(-\beta \langle U_1\rangle _0 )^3 - {1 \over 2} \left ( -\beta \langle U_1 \rangle _0 + {1 \over 2}\beta^2\langle U_1^2 \rangle\right)^2 \nonumber$

Thus,

$\omega_3 = \langle U_1^3 \rangle_0 + 2\langle U_1 \rangle_0^3- 3\langle U_1 \rangle_0\langle U_1^2 \rangle_0 \nonumber$

Now, the free energy, up to the third order term is given by

\begin{align*} A &= A{^{(0)}}+ \omega_1 - {\beta \over 2}\omega_2 + {\beta^2 \over 6}\omega_3 \cdots \\[4pt] &= -{1 \over \beta}\ln \left({Z_N{^{(0)}}\over N! \lambda^{3N}}\right) + \langle U_1 \rangle_0 - {\beta \over 2} \left \langle U_1^2 \rangle_0 - \langle U_1\rangle _0^2 \right ) + {\beta^2 \over 6} \left (\langle U_1^3 \rangle - 3 \langle U_1 \rangle _0\langle U_1^2 \rangle_0 + 2\langle U_1 \rangle_0^3 \right)+ \cdots \end{align*}

In order to evaluate $$\langle U_1 \rangle _0$$, suppose that $$U_1$$ is given by a pair potential

$U_1({{\bf r}_1,...,{\bf r}_N}) = {1 \over 2}\sum_{i\neq j}u_1(\vert{\bf r}_i - {\bf r}_j\vert) \nonumber$

Then,

\begin{align*} \langle U_1 \rangle_0 &= {1 \over Z_N{^{(0)}}}\int {d{\textbf r}_1\cdots d{\textbf r}_N}{1 \over 2} \sum_{i \ne j} u_1(\vert{\textbf r}_i-{\textbf r}_j\vert)e^{-\beta U_0( r_1,...,r_N)} \\[4pt] &= \dfrac{N(N-1)}{2 Z_N{^{(0)}}} \int d{\textbf r}_1 d{\textbf r}_2 u_1(\vert r_1 - r_2 \vert)\int d{\textbf r}_3\cdots d{\textbf r}_Ne^{-\beta U_0({{\bf r}_1,...,{\bf r}_N})} \\[4pt] &= \dfrac{N^2}{2V^2} \int d{\textbf r}_1 d{\textbf r}_2 u_1(\vert {\textbf r}_1-{\textbf r}_2\vert) g_0^{(2)}({\textbf r}_1,{\textbf r}_2) \\[4pt] &= \dfrac{\rho^2 V}{2} \int_0^{\infty}4\pi r^2 u_1(r)g_0(r)dr \end{align*}

The free energy is therefore given by

$A(N,V,T) = -{1 \over \beta}\ln\left({Z_N^{(0)} \over N! \lambda ^{3N} } \right ) + {1 \over 2} \rho ^2 V \int _0^{\infty} 4 \pi r^2 u_1 (r) g_0 (r) dr - {\beta \over 2} \left ( \langle U_1^2 \rangle_0 - \langle U_1 \rangle_0^2\right)\cdots \nonumber$

This page titled 7.1: General Formulation of Distribution Functions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.