Skip to main content
Chemistry LibreTexts

6.3: Ideal Gas

  • Page ID
    5212
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Recall the canonical partition function expression for the ideal gas:

    \[Q(N,V,T) = {1 \over N!} \left[{V \over h^3}\left({2\pi m \over \beta}\right)^{3/2}\right]^{N} \nonumber \]

    Define the thermal wavelength \(\lambda (\beta)\) as \[\lambda(\beta) = \left({\beta h^2 \over 2 \pi m}\right)^{1/2} \nonumber \] which has a quantum mechanical meaning as the width of the free particle distribution function. Here it serves as a useful parameter, since the canonical partition can be expressed as

    \[Q(N,V,T) = {1 \over N!}\left({V \over \lambda^3}\right)^N \nonumber \]

    The grand canonical partition function follows directly from \(Q(N,V,T)\):

    \[{\cal Z}(\zeta,V,T) = \sum_{N=0}^{\infty}{1 \over N!}\left({V\zeta \over \lambda^3}\right)^N = e^{V\zeta/\lambda^3} \nonumber \]

    Thus, the free energy is

    \[{PV \over kT} = \ln {\cal Z} = {V \zeta \over \lambda^3} \nonumber \]

    In order to obtain the equation of state, we first compute the average particle number \(\langle N \rangle\)

    \[\langle N \rangle = \zeta {\partial \over \partial \zeta}\ln {\cal Z}= {V \zeta \over \lambda^3} \nonumber \]

    Thus, eliminating \(\zeta\) in favor of \(\langle N \rangle \) in the equation of state gives

    \[PV = \langle N \rangle kT \nonumber \]

    as expected. Similarly, the average energy is given by

    \[ E = -\left({\partial \ln {\cal Z}\over \partial \beta}\right )_{\zeta V} = {3V\zeta \over \lambda^4}{\partial \lambda \over \partial \beta} ={3 \over 2}\langle N \rangle kT \nonumber \]

    where the fugacity has been eliminated in favor of the average particle number. Finally, the entropy

    \[S(\mu,V,T) = k\ln {\cal Z}(\mu,V,T) - k\beta\left({\partial\ln {\cal Z} (\mu, V, T) \over \partial \beta} \right)_{\mu, V} = {5 \over 2}\langle N \rangle k + \langle N \rangle k\ln \left[{V\lambda^3 \over \langle N \rangle} \right] \nonumber \]

    which is the Sackur-Tetrode equation derived in the context of the canonical and microcanonical ensembles.


    This page titled 6.3: Ideal Gas is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?