Skip to main content
Chemistry LibreTexts

3.1: Basic Thermodynamics

  • Page ID
    5168
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In the microcanonical ensemble, the entropy \(S\) is a natural function of \(N\),\(V\) and \(E\), i.e., \(S=S(N,V,E)\). This can be inverted to give the energy as a function of \(N\), \(V\), and \(S\), i.e., \(E=E(N,V,S)\). Consider using Legendre transformation to change from \(S\) to \(T\) using the fact that

    \[T= \left(\frac {\partial E}{\partial S}\right)_{N,V} \nonumber \]

    The Legendre transform \(\tilde{E}\) of \(E(N,V,S)\) is

    \[ \tilde {E} (N, V, T ) = E (N,V,S(T)) - S \frac {\partial E}{\partial S} \nonumber \]

    \[ = E(N,V,S(T)) - TS \nonumber \]

    The quantity \(\tilde{E}(N,V,T)\) is called the Hemlholtz free energy and is given the symbol \(A(N,V,T)\) and is the fundamental energy in the canonical ensemble. The differential of \(A\) is

    \[dA = \left( \partial A \over \partial T \right)_{N,V}dT + \left( \partial A \over \partial V \right)_{N,T} dV +\left( \partial A \over \partial N \right)_{T,V} dN \nonumber \]

    However, from \(A = E - TS \), we have

    \[ dA = dE - TdS - SdT \nonumber \]

    From the first law, \(dE\) is given by

    \[ dE = TdS - PdV + \mu dN \nonumber \]

    Thus,

    \[ dA = - PdV - S dT + \mu dN \nonumber \]

    Comparing the two expressions, we see that the thermodynamic relations are

    \[ S = -\left(\frac {\partial A}{\partial T}\right)_{N,V} \nonumber \]

    \[ P = -\left(\frac {\partial A}{\partial V}\right)_{N,T} \nonumber \]

    \[ \mu = -\left(\frac {\partial A}{\partial N}\right)_{V,T} \nonumber \]


    This page titled 3.1: Basic Thermodynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark Tuckerman.

    • Was this article helpful?