Skip to main content
Chemistry LibreTexts

PC4. Photolysis

  • Page ID
    4339
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    We have seen that the absorption of photons (especially in the ultraviolet-visible spectrum) is connected to the excitation of electrons. After excitation, a number of different relaxation pathways lead back to the ground state. Sometimes, absorption of a photon leads to a vastly different outcome. Instead of just relaxing again, the molecules may undergo bond-breaking reactions, instead.

    An example of this phenomenon is observed in the complex ion [Co(NH3)]63+. Addition of UV light to this complex results in loss of ammonia. In the absence of UV light, however, the complex ion is quite stable.

    In many cases, loss of a ligand is followed by replacement by a new one. For example, if an aqueous solution of [Co(NH3)]63+ is photolysed, an ammonia ligand is easily replaced by water.

    Problem PC4.1.

    Draw a d orbital splitting diagram for [Co(NH3)]63+. Explain why this complex is normally inert toward substitution.

    Problem PC4.2.

    Use the d orbital splitting diagram for [Co(NH3)]63+ to explain why this complex is undergoes substitution upon irradiation with UV light.

    Photolysis is the term used to describe the use of light to initiate bon-breaking events. Photolysis frequently involves the use of high-intensity ultraviolet lamps. The high intensity light is needed in order to provide enough photons to get higher conversion of reactant into a desired product.


    This page titled PC4. Photolysis is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Chris Schaller.

    • Was this article helpful?