Skip to main content
Chemistry LibreTexts

Substitution Solutions

  • Page ID
    8595
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Screen Shot 2014-01-28 at 3.06.00 PM.png

    The above substitution mechanism is bimolecular (SN2) because there is a strong nucleophile given as well as an aprotic solvent. Remember: a strong nucleophile favors SN2 and an aprotic solvent will also favor SN2.

    Screen Shot 2014-01-28 at 3.06.14 PM.png

    Screen Shot 2014-01-28 at 3.06.22 PM.png

    The above substitution mechanism is unimolecular (SN1) because there is not a strong nucleophile present. Remember: a weak nucleophile favors SN1 and because the electrophile leaves first, a carbocation is formed. Therefore, the nucleophile, CH3CH2CH2OH can attack both the front and the back, resulting in a racemic mixture.


    Substitution Solutions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?