Skip to main content
Chemistry LibreTexts

10.3: Acid Dissociation Constants

  • Page ID
    86248
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Learning Objectives
    • Write the acid dissociation constant (\(K_a\)) expression.
    • Determine the relative strength of an acid using the (\(K_a\)) value.

    The ionization for a general weak acid, \(\ce{HA}\), can be written as follows:

    \[\ce{HA} \left( aq \right) \rightleftharpoons \ce{H^+} \left( aq \right) + \ce{A^-} \left( aq \right) \nonumber \]

    Because the acid is weak, an equilibrium expression can be written. An acid ionization constant \(\left( K_\text{a} \right)\) is the equilibrium constant for the ionization of an acid.

    \[K_\text{a} = \frac{\left[ \ce{H^+} \right] \left[ \ce{A^-} \right]}{\left[ \ce{HA} \right]} \nonumber \]

    The acid ionization represents the fraction of the original acid that has been ionized in solution. Therefore, the numerical value of \(K_\text{a}\) is a reflection of the strength of the acid. Weak acids with relatively higher \(K_\text{a}\) values are stronger than acids with relatively lower \(K_\text{a}\) values. Because strong acids are essentially \(100\%\) ionized, the concentration of the acid in the denominator is nearly zero and the \(K_\text{a}\) value approaches infinity. For this reason, \(K_\text{a}\) values are generally reported for weak acids only.

    The table below is a listing of acid ionization constants for several acids. Note that polyprotic acids have a distinct ionization constant for each ionization step, with each successive ionization constant being smaller than the previous one.

    Name of Acid Ionization Equation \(K_\text{a}\)
    Table \(\PageIndex{1}\): Acid Ionization Constants at \(25^\text{o} \text{C}\)
    Sulfuric acid

    \(\ce{H_2SO_4} \rightleftharpoons \ce{H^+} + \ce{HSO_4^-}\)

    \(\ce{HSO_4} \rightleftharpoons \ce{H^+} + \ce{SO_4^{2-}}\)

    very large

    \(1.3 \times 10^{-2}\)

    Hydrofluoric acid \(\ce{HF} \rightleftharpoons \ce{H^+} + \ce{F^-}\) \(7.1 \times 10^{-4}\)
    Nitrous acid \(\ce{HNO_2} \rightleftharpoons \ce{H^+} + \ce{NO_2^-}\) \(4.5 \times 10^{-4}\)
    Benzoic acid \(\ce{C_6H_5COOH} \rightleftharpoons \ce{H^+} + \ce{C_6H_5COO^-}\) \(6.5 \times 10^{-5}\)
    Acetic acid \(\ce{CH_3COOH} \rightleftharpoons \ce{H^+} + \ce{CH_3COO^-}\) \(1.8 \times 10^{-5}\)
    Carbonic acid

    \(\ce{H_2CO_3} \rightleftharpoons \ce{H^+} + \ce{HCO_3^-}\)

    \(\ce{HCO_3^-} \rightleftharpoons \ce{H^+} + \ce{CO_3^{2-}}\)

    \(4.2 \times 10^{-7}\)

    \(4.8 \times 10^{-11}\)

    Hydrofluoric acid \(HF_{(aq)}\) reacts directly with glass (very few chemicals react with glass). Hydrofluoric acid is used in glass etching.


    10.3: Acid Dissociation Constants is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?