Skip to main content
Chemistry LibreTexts

13.13: Crystal Systems

  • Page ID
    53812
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    High quality crystals are often used to generate precise laser beams
    Figure \(\PageIndex{1}\) (Public Domain; the National Cancer Institute via Wikipedia)

    What are the different uses of lasers?

    The development of modern lasers has opened many doors to both research and applications. A laser beam was used to measure the distance from the Earth to the moon. Lasers are important components of CD players. As the image above illustrates, lasers can provide precise focusing of beams to selectively destroy cancer cells in patients. The ability of a laser to focus precisely is due to high-quality crystals that help give rise to the laser beam. A variety of techniques are used to manufacture pure crystals for use in lasers.

    Crystalline Solids

    The majority of solids are crystalline in nature. A crystal is a substance in which the particles are arranged in an orderly, repeating, three-dimensional pattern. Particles of a solid crystal may be ions, atoms, or molecules, depending on the type of substance. The three-dimensional arrangement of a solid crystal is referred to as the crystal lattice. Different arrangements of the particles within a crystal cause them to adopt several different shapes.

    Crystal Systems

    Crystals are classified into general categories based on their shapes. A crystal is defined by its faces, which intersect one another at specific angles; these intersections are characteristic of the given substance. The seven crystal systems are shown below, along with an example of each. The edge lengths of a crystal are represented by the letters \(a\), \(b\), and \(c\). The angles at which the faces intersect are represented by the Greek letters \(\alpha\), \(\beta\), and \(\gamma\). Each of the seven crystal systems differ in terms of the angles between the faces, and in the number of edges of equal length on each face.

    Table \(\PageIndex{1}\): Seven Basic Crystal Systems and Examples of Each

    Seven Basic Crystal Systems and Examples of Each
    Crystal System Diagram Example

    Cubic

    \(a = b = c\); \(\alpha = \beta = \gamma = 90^\text{o}\)

    Structure of a cubic crystal
    Figure \(\PageIndex{2}\): (CC by-NC 3.0; Christopher Auyeung via CK-12 Foundation)
    An example of a cubic crystal is pyrite
    Figure \(\PageIndex{3}\): Pyrite. (CC BY 3.0; User: Teravolt/Wkipedia via http://en.Wikipedia.org/wiki/File:Pyrite_Cubes.JPG)

    Tetragonal

    \(a = b \neq c\); \(\alpha = \beta = \gamma = 90^\text{o}\)

    Structure of a tetragonal crystal
    Figure \(\PageIndex{4}\): (CC by-NC 3.0; Christopher Auyeung via CK-12 Foundation)
    An example of a tetragonal crystal is wulfenite
    Figure \(\PageIndex{5}\): Wulfenite. (Public Domain; the "Minerals in Your World Project" by the US Geological Survey and the Mineral Information Institute via Wikipedia)

    Orthorhombic

    \(a \neq b \neq c\); \(\alpha = \beta = \gamma = 90^\text{o}\)

    Structure of an orthorhombic crystal
    Figure \(\PageIndex{6}\): (CC by-NC 3.0; Christopher Auyeung via CK-12 Foundation)
    An example of an orthorhombic crystal is aragonite
    Figure \(\PageIndex{7}\): Aragonite. (Public Domain; Christoph Radtke via Wikipedia)

    Monoclinic

    \(a \neq b \neq c\); \(\alpha \neq 90^\text{o} = \beta = \gamma\)

    Structure of a monoclinic crystal
    Figure \(\PageIndex{8}\): (CC by-NC 3.0; Christopher Auyeung via CK-12 Foundation)
    An example of a monoclinic crystal is azurite
    Figure \(\PageIndex{9}\): Azurite. (CC by 2.0; Stephanie Clifford (Flickr: sdixclifford) via Flickr)

    Rhombohedral

    \(a = b = c\); \(\alpha = \beta = \gamma \neq 90^\text{o}\)

    Structure of a rhombohedral crystal
    Figure \(\PageIndex{10}\): (CC by-NC 3.0; Christopher Auyeung via CK-12 Foundation)
    An example of a rhombohedral crystal is calcite
    Figure \(\PageIndex{11}\): Calcite. (CC BY 2.0; Mike Beauregard (Flickr: subarcticmike) via Flickr)

    Triclinic

    \(a \neq b \neq c\); \(\alpha \neq \beta \neq \gamma \neq 90^\text{o}\)

    Structure of a triclinic crystal
    Figure \(\PageIndex{12}\): (Credit: Christopher Auyeung; Source: CK-12 Foundation License: CC BY-NC 3.0)
    An example of a triclinic crystal is microcline
    Figure \(\PageIndex{13}\): Microcline. (Public Domain; the "Minerals in Your World Project" by the US Geological Survey and the Mineral Information Institute via Wikipedia)

    Hexagonal

    \(a = b \neq c\); \(\alpha = \beta = 90^\text{o}\), \(\gamma = 120^\text{o}\)

    Structure of a hexagonal crystal
    Figure \(\PageIndex{14}\): (CC BY-NC 3.0; Christopher Auyeung via CK-12 Foundation)
    An example of a hexagonal crystal is beryl
    Figure \(\PageIndex{15}\): Beryl. (Public Domain; Parent Gery; Parent Géry via Wikipedia)

    Summary

    • A crystal is a substance in which the particles are arranged in an orderly, repeating, three-dimensional pattern.
    • The crystal lattice is the three-dimensional arrangement of a solid crystal.

    Review

    1. What is a crystal?
    2. List the seven crystal systems.

    This page titled 13.13: Crystal Systems is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License