1.8: N-dimensional cyclic systems
- Page ID
- 221676
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)This lecture will provide a derivation of the LCAO eigenfunctions and eigenvalues of N total number of orbitals in a cyclic arrangement. The problem is illustrated below:
There are two derivations to this problem.
Polynomial Derivation
The Hückel determinant is given by,
\[D_{N}(x)=\left|\begin{array}{ccccccccc}
x & 1 & & & & & & & \\
1 & x & 1 & & & & & & \\
& 1 & x & \ddots & & & & & \\
& & 1 & \ddots & \ddots & & & & \\
& & & \ddots & \ddots & \ddots & & & \\
& & & & \ddots & \ddots & \ddots & & \\
& & & & & \ddots & \ddots & 1 & \\
& & & & & & \ddots & x & 1 \\
& & & & & & 1 & x
\end{array}\right|=0\]
where
\[ x=\frac{\alpha-E}{\beta}\]
From a Laplace expansion one finds,
\[D_N(x)=x D_{n-1}(x)-D_{N-2}(x)\]
Where
\[
\begin{array}{l}
D_1(x)=x \\
D_2(x)=\left|\begin{array}{ll}
x & 1 \\
1 & x
\end{array}\right|=x^2-1
\end{array}
\notag \]
With these parameters defined, the polynomial form of DN(x) for any value of N can be obtained,
\[
\begin{array}{c}
D_3(x)=x D_2(x)-D_1(x)=x\left(x^2-1\right)-x=x\left(x^2-2\right) \\
D_4(x)=x D_3(x)-D_2(x)=x^2\left(x^2-2\right)-\left(x^2-1\right)
\end{array}
\notag \]
\[ \vdots \nonumber \]
and so on
The expansion of DN(x) has as its solution,
\[ x={-2}\cos \dfrac{2\pi}{N}j (j= 0, 1, 2, 3...N-1) \nonumber \]
and substituting for x,
\[ E = \alpha + 2\beta\cos \dfrac{2\pi}{N}j (j= 0, 1, 2, 3...N-1) \nonumber \]
Standing Wave Derivation
An alternative approach to solving this problem is to express the wavefunction directly in an angular coordinate, θ
For a standing wave of λ about the perimeter of a circle of circumference c,
\[ \psi_j = \sin \dfrac{c}{\lambda} \theta \nonumber \]
The solution to the wave function must be single valued ∴ a single solution must be obtained for ψ at every 2nπ or in analytical terms,
Thus the amplitude of \(ψ_j\) at atom m is, (where c/λ = j and θ = (2π/N)m)
\[ \psi_{j}(m) = \sin{2m\pi}{N}j (j= 0, 1, 2, 3...N-1) \nonumber \]
Within the context of the LCAO method, ψj may be rewritten as a linear combination in φm with coefficients cjm. Thus the amplitude of ψj at m is equivalent to the coefficient of φm in the LCAO expansion,
\[ \psi_{j} = \displaystyle \sum_{k=1}^N C_{jm\phi m} \]
Where
\[C_{jm} = \sin{2\pi m}{N}j (j= 0, 1, 2, 3...N-1) \nonumber \]
The energy of each MO, ψj, may be determined from a solution of Schrödinger’s equation,
\[
\begin{array}{l}
\mathrm{H} \psi_j=\mathrm{E}_j \psi_j \\
\left.\left|\mathrm{H}-\mathrm{E}_{\mathrm{j}}\right| \psi_j\right\rangle=0 \\
\left.\left|\mathrm{H}-\mathrm{E}_j\right| \sum_m^{\mathrm{N}} \mathrm{c}_{j m} \phi_m\right\rangle=0
\end{array}
\notag \]
The energy of the φm orbital is obtained by left–multiplying by φm,
\[\left\langle\phi_m\left|H-E_j\right| \sum_m^N c_{j m} \phi_m\right\rangle=0 \notag \]
but the Hückel condition is imposed; the only terms that are retained are those involving φm, φm+1, and φm-1. Expanding,
Evaluating the integrals,
\[
\begin{array}{l}
\alpha \mathrm{c}_{j m}-\mathrm{c}_{j m} \mathrm{E}_{\mathrm{j}}+\beta\left\lfloor\mathrm{c}_{\mathrm{j}(\mathrm{m}+1)}+\mathrm{c}_{j(\mathrm{~m}-1)}\right\rfloor=0 \\
\alpha \mathrm{c}_{j m}+\beta\left\lfloor\mathrm{c}_{j(m+1)}+\mathrm{c}_{\mathrm{j}(\mathrm{m}-1)}\right\rfloor=\mathrm{c}_{j m} \mathrm{E}_{\mathrm{j}}
\end{array}
\no tag\]
Substituting for cjm,
\[ \alpha \sin \dfrac{2\pi m}{N}j + \beta \left( \sin \dfrac{2\pi (m+1)}{N}j + \sin \dfrac{2\pi (m-1)}{N}j \right) = E_{j} \sin \dfrac{2\pi m}{N}j \nonumber \]
\[ \alpha + \dfrac{ \beta \left( \sin \dfrac{2\pi (m+1)}{N}j + \sin \dfrac{2\pi (m-1)}{N}j \right)}{ \sin \dfrac{2\pi m}{N}j} = E_{j} \nonumber \]
Making the simplifying substitution, \(\kappa=\frac{2 \pi}{N} j\)
\[
\mathrm{E}_{\mathrm{j}}=\alpha+\beta\left(\frac{\sin \kappa \mathrm{m} \cdot \cos \kappa+\sin \kappa \cdot \cos \kappa \mathrm{m}+\sin \kappa \mathrm{m} \cdot \cos \kappa-\sin \kappa \cdot \cos \kappa \mathrm{m}}{\sin \kappa \mathrm{m}}\right)
\notag \]
\[ E_{j} = \alpha + 2\beta \cos k \nonumber \]
\[ E_{j} = \alpha + 2\beta \cos \dfrac{2\pi}{N}j (j= 0, 1, 2, 3...N-1) \nonumber \]
Let’s look at the simplest cyclic system, N = 3
Continuing with our approach (LCAO) and using Ej to solve for the eigenfunction, we find…
\[
\psi_j=\sum_m e^{i j \theta} \phi_m \quad \text { for } j=0, \pm 1, \pm 2 \ldots\left\{\begin{array}{l}
\pm \frac{N}{2} \text { for } N \text { even } \\
\pm \frac{(N-1)}{2} \text { for } N \text { odd }
\end{array}\right.
\]
Using the general expression for ψj, the eigenfunctions are:
\[ \psi_{0} = e^{i(0)0} \phi_{1} + e^{i(0) \dfrac{2\pi}{3}} \phi_{2} + e^{i(0) \dfrac{4\pi}{3}} \phi_{3} \nonumber \]
\[ \psi_{1} = e^{i(1)0} \phi_{1} + e^{i(1) \dfrac{2\pi}{3}} \phi_{2} + e^{i(1) \dfrac{4\pi}{3}} \phi_{3} \nonumber \]
\[ \psi_{-1} = e^{i(-1)0} \phi_{1} + e^{i(-1) \dfrac{2\pi}{3}} \phi_{2} + e^{i(-1) \dfrac{4\pi}{3}} \phi_{3} \nonumber \]
Obtaining real components of the wavefunctions and normalizing,
\[
\begin{array}{ll}
\psi_{0}=\phi_{1}+\phi_{2}+\phi_{3} \rightarrow & \psi_{0}=\frac{1}{\sqrt{3}}\left(\phi_{1}+\phi_{2}+\phi_{3}\right) \\
\psi_{+1}+\psi_{-1}=2 \phi_{1}-\phi_{2}-\phi_{3} \rightarrow & \psi_{1}=\frac{1}{\sqrt{6}}\left(2 \phi_{1}-\phi_{2}-\phi_{3}\right) \\
\psi_{+1}-\psi_{-1}=\phi_{2}-\phi_{3} \rightarrow & \psi_{2}=\frac{1}{\sqrt{2}}\left(\phi_{2}-\phi_{3}\right)
\end{array}
\]
Summarizing on a MO diagram where α is set equal to 0,