21.5A: Titanium Metal
- Page ID
- 34431
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The discovery of titanium in 1791 is attributed to William Gregor, a Cornish vicar and amateur chemist. He isolated an impure oxide from ilmenite (FeTiO3) by treatment with HCl and H2SO4. Titanium is the second most abundant transition metal on Earth (6320 ppm) and plays a vital role as a material of construction because of its: Excellent Corrosion Resistance, High Heat Transfer Efficiency, and Superior Strength-To-Weight Ratio. For example, when it's alloyed with 6% aluminum and 4% vanadium, titanium has half the weight of steel and up to four times the strength.
While a biological function in man is not known, it has excellent biocompatibility--that is the ability to be ignored by the human body's immune system--and an extreme resistance to corrosion. Titanium is now the metal of choice for hip and knee replacements.
Properties of titanium
Extraction of Titanium - the Kroll process
Wilhelm J. Kroll (Born November 24, 1889 - Died March 30, 1973) developed the process in Luxemburg around the mid 1930's and then after moving to the USA extended it to enable the extraction of Zirconium as well.
Titanium ores, mainly rutile (TiO2) and ilmentite (FeTiO3), are treated with carbon and chlorine gas to produce titanium tetrachloride.
\[\ce{TiO_2 + Cl_2 \rightarrow TiCl_4 + CO_2}\]
Fractionation
Titanium tetrachloride is purified by distillation (BP 136.4) to remove iron chloride.
Reduction
Purified titanium tetrachloride is reacted with molten magnesium under argon to produce a porous “titanium sponge”.
\[\ce{TiCl4 + 2Mg -> Ti + 2MgCl2}\]
Melting
Titanium sponge is melted under argon to produce ingots.
The Kroll process (ISIS Draw .skc file)
Titanium Halides
Formula | Color | MP | BP | Structure |
---|---|---|---|---|
TiF4 | white | - | 284 | fluoride bridged |
TiCl4 | Colorless | -24 | 136.4 | - |
TiBr4 | yellow | 38 | 233.5 | hcp I- but essentially monomeric cf. SnI4 |
TiI4 | violet-black | 155 | 377 | hcp I- but essentially monomeric cf. SnI4 |
Preparations:
They can all be prepared by direct reaction of Ti with halogen gas (X2). All are readily hydrolysed.
They are all expected to be diamagnetic.
Formula | Color | MP | BP | m (BM) | Structure |
---|---|---|---|---|---|
TiF3 | blue | 950d | - | 1.75 | - |
TiCl3 | violet | 450d | - | - | BiI3 |
TiBr3 | violet | - | - | - | BiI3 |
TiI3 | violet-black | - | - | - | - |
Preparations:
They can be prepared by reduction of TiX4 with H2.
Titanium Oxides and Aqueous Chemistry
Formula | Color | MP | m (BM) | Structure |
---|---|---|---|---|
TiO2 | white | 1892 | diam. | r | utile - Refractive Index 2.61-2.90 cf. Diamond 2.42
Preparations:
obtained from hydrolysis of TiX4 or Ti(III) salts.
TiO2 reacts with acids and bases.
In Acid:
TiOSO4 formed in H2SO4 (Titanyl sulfate)
In Base:
MTiO3 metatitanates (eg Perovskite, CaTiO3 and ilmenite, FeTiO3)
M2TiO4 orthotitanates.
Peroxides are highly Colored and can be used for Colorimetric analysis.
pH <1 [TiO2(OH)(H2O)x]+
pH 1-2 [(O2)Ti-O-Ti(O2)](OH) x2-x; x=1-6
[Ti(H2O)6]3+ -> [Ti(OH)(H2O)5]2+ + [H+] pK=1.4
TiO2+ + 2H+ + e- -> Ti3+ + H2O E=0.1V
Representative complexes
TiCl4 is a good Lewis acid and forms adducts on reaction with Lewis bases such as;
2PEt3 -> TiCl4(PEt3)2 2MeCN -> TiCl4(MeCN)2 bipy -> TiCl4(bipy)
Solvolysis can occur if ionisable protons are present in the ligand;
2NH3 -> TiCl2(NH2)2 + 2HCl 4H2O -> TiO2.aq + 4HCl 2EtOH -> TiCl2(OEt)2 + 2HCl
TiCl3 has less Lewis acid strength but can form adducts also;
3pyr -> TiCl3pyr3
References
- "Complexes and First-Row Transition Elements", D. Nicholls
- "Basic Inorganic Chemistry", F.A. Cotton, G. Wilkinson and P.L. Gaus
- "Advanced Inorganic Chemistry", F.A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann
- "Chemistry of the Elements", Greenwood and Earnshaw
Contributors and Attributions
Prof. Robert J. Lancashire (The Department of Chemistry, University of the West Indies)