Skip to main content
Chemistry LibreTexts

1.5: Molecular Point Groups 2

  • Page ID
    221673
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The D point groups are distiguished from C point groups by the presence of rotation axes that are perpindicular to the principal axis of rotation.

    Dn : Cn and n⊥C2 (h = 2n)

    Example: Co(en)3 3+ is in the D3 point group,

    34.PNG

    In identifying molecules belonging to this point group, if a Cn is present and one ⊥C2 axis is identified, then there must necessarily be (n–1)⊥C2s generated by rotation about Cn.

    Dnd : Cn, n⊥C2, nσd (dihedral mirror planes bisect the ⊥C2s)

    Example: allene is in the D2d point group,

    35.PNG

    Two C2s bisect σds. The example on the bottom on pg 3 of the Lecture 4 notes was a harbinger of this point group. As indicated there, it is often easier to see these perpendicular C2s by reorienting the molecule along the principal axis of rotation.

    Note: Dnd point groups will contain i, when n is odd

    36.PNG

    Dnh : Cn, n⊥C2, nσv, σh (h = 4n)

    37.PNG

    C∞v : C and ∞σv (h = ∞)

    linear molecules without an inversion center

    38.PNG

    D∞h : C, ∞⊥C2, ∞σv, σh, i (h = ∞)

    linear molecules with an inversion center

    39.PNG

    when working with this point group, it is often convenient to drop to D2h and then correlate up to D∞h

    Td : E, 8C3, 3C2, 6S4, 6σd (h = 24)

    40.PNG

    Oh : E, 8C3, 6C2, 6C4, 3C2 (=C4 2 ), i, 6S4, 8S6, 3σh, 6σd (h = 48)

    41.PNG

    O : E, 8C3, 6C2, 6C4, 3C2 (=C4 2 )

    A pure rotational subgroup of Oh, contains only the Cn’s of Oh point group

    T : E, 8C3, 3C2

    A pure rotational subgroup of Td, contains only the Cn’s of Td point group

    42.PNG

    Ih : generators are C3, C5, i (h = 120) \(\Longrightarrow\) the icosahedral point group

    Kh : generators are Cφ, Cφ’, i (h = ∞) \(\Longrightarrow\) the spherical point group

    Flow chart for assigning molecular point groups:

    43.PNG


    This page titled 1.5: Molecular Point Groups 2 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Daniel Nocera via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.