Skip to main content
[ "article:topic-guide", "showtoc:no", "license:ccbyncsa" ]
Chemistry LibreTexts

2: Atoms, Molecules, and Ions

  • Page ID
    21657
  • In this chapter, you will learn how to describe the composition of chemical compounds. We introduce chemical nomenclature—the language of chemistry—that will enable you to recognize and name the most common kinds of compounds. An understanding of chemical nomenclature not only is essential for your study of chemistry but also has other benefits—for example, it helps you understand the labels on products found in the supermarket and the pharmacy. You will also be better equipped to understand many of the important environmental and medical issues that face society. By the end of this chapter, you will be able to describe what happens chemically when a doctor prepares a cast to stabilize a broken bone, and you will know the composition of common substances such as laundry bleach, the active ingredient in baking powder, and the foul-smelling compound responsible for the odor of spoiled fish. Finally, you will be able to explain the chemical differences among different grades of gasoline.

    • 2.1: The Atomic Theory of Matter
      This article explains the theories that Dalton used as a basis for his theory: (1) the Law of Conservation of Mass, (2) the Law of Constant Composition, (3) the Law of Multiple Proportions.
    • 2.2: The Discovery of Atomic Structure
      Atoms, the smallest particles of an element that exhibit the properties of that element, consist of negatively charged electrons around a central nucleus composed of more massive positively charged protons and electrically neutral neutrons. Radioactivity is the emission of energetic particles and rays (radiation) by some substances. Three important kinds of radiation are α particles (helium nuclei), β particles (electrons traveling at high speed), and γ rays.
    • 2.3: The Modern View of Atomic Structure
      Each atom of an element contains the same number of protons, which is the atomic number (Z). Neutral atoms have the same number of electrons and protons. Atoms of an element that contain different numbers of neutrons are called isotopes. Each isotope of a given element has the same atomic number but a different mass number (A), which is the sum of the numbers of protons and neutrons. The relative masses of atoms are reported using the atomic mass unit (amu).
    • 2.4: Atomic Mass
      The mass of an atom is a weighted average that is largely determined by the number of its protons and neutrons, and the number of protons and electrons determines its charge. Each atom of an element contains the same number of protons, known as the atomic number (Z). Neutral atoms have the same number of electrons and protons. Atoms of an element that contain different numbers of neutrons are called isotopes. Each isotope of a given element has the same atomic number, but different mass number.
    • 2.5: The Periodic Table
      The periodic table is used as a predictive tool that arranges of the elements in order of increasing atomic number. Elements that exhibit similar chemistry appear in vertical columns called groups (numbered 1–18 from left to right); the seven horizontal rows are called periods. The elements can be broadly divided into metals, nonmetals, and semimetals. Semimetals exhibit properties intermediate between those of metals and nonmetals.
    • 2.6: Molecules and Molecular Compounds
      There are two fundamentally different kinds of chemical bonds (covalent and ionic) that cause substances to have very different properties. The atoms in chemical compounds are held together by attractive electrostatic interactions known as chemical bonds. The molecular formula of a covalent compound gives the types and numbers of atoms present. Diatomic molecules contain two atoms, and polyatomic molecules contain more than two.
    • 2.7: Ions and Ionic Compounds
      The atoms in chemical compounds are held together by attractive electrostatic interactions known as chemical bonds. Ionic compounds contain positively and negatively charged ions in a ratio that results in an overall charge of zero. The ions are held together in a regular spatial arrangement by electrostatic forces.  Atoms or groups of atoms that possess a net electrical charge are called ions; they can have either a positive charge (cations) or a negative charge (anions).
    • 2.8: Naming Inorganic Compounds
      The composition of a compound is represented by an empirical or molecular formula, each consisting of at least one formula unit. Covalent inorganic compounds are named using a procedure similar to that used for ionic compounds, whereas hydrocarbons use a system based on the number of bonds between carbon atoms. Covalent inorganic compounds are named by a procedure similar to that used for ionic compounds, using prefixes to indicate the numbers of atoms in the molecular formula.
    • 2.9: Some Simple Organic Compounds
      The simplest organic compounds are the hydrocarbons, which contain only carbon and hydrogen. Alkanes contain only carbon–hydrogen and carbon–carbon single bonds, alkenes contain at least one carbon–carbon double bond, and alkynes contain one or more carbon–carbon triple bonds. Hydrocarbons can also be cyclic, with the ends of the chain connected to form a ring. Collectively, alkanes, alkenes, and alkynes are called aliphatic hydrocarbons.
    • 2.E: Atoms, Molecules, and Ions (Exercises)
      These are homework exercises to accompany the Textmap created for "Chemistry: The Central Science" by Brown et al.
    • 2.S: Atoms, Molecules, and Ions (Summary)
      This is the summary Module for the chapter "Atoms, Molecules, and Ions" in the Brown et al. General Chemistry Textmap.

    Thumbnail: Spinning Buckminsterfullerene (\(\ce{C60}\)). Image used with permission (CC BY-SA 3.0; unported; Sponk).