Skip to main content
Chemistry LibreTexts

6.9: Equilibria of Real Gases

  • Page ID
    60213
  • Le Chatelier's principle states that if a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract the change to reestablish an equilibrium. If a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change. This page covers changes to the position of equilibrium due to such changes and discusses briefly why catalysts have no effect on the equilibrium position.

    • Case Study: The Manufacture of Ethanol from Ethene
      This page describes the manufacture of ethanol by the direct hydration of ethene, and then goes on to explain the reasons for the conditions used in the process. It looks at the effect of proportions, temperature, pressure and catalyst on the composition of the equilibrium mixture and the rate of the reaction.
    • Effect of Temperature on Equilibrium
      A temperature change occurs when temperature is increased or decreased by the flow of heat. This shifts chemical equilibria toward the products or reactants, which can be determined by studying the reaction and deciding whether it is endothermic or exothermic.
    • ICE Tables
      An ICE (Initial, Change, Equilibrium) table is simple matrix formalism that used to simplify the calculations in reversible equilibrium reactions (e.g., weak acids and weak bases or complex ion formation).
    • Le Chatelier's Principle and Dynamic Equilbria
      This page looks at Le Châtelier's Principle and explains how to apply it to reactions in a state of dynamic equilibrium. It covers changes to the position of equilibrium if you change concentration, pressure or temperature. It also explains very briefly why catalysts have no effect on the position of equilibrium.
    • Le Chatelier's Principle Fundamentals
      Le Châtelier's principle states that if a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium shifts to counteract the change to reestablish an equilibrium. If a chemical reaction is at equilibrium and experiences a change in pressure, temperature, or concentration of products or reactants, the equilibrium shifts in the opposite direction to offset the change.
    • The Contact Process
      The Contact Process is used in the manufacture of sulfuric acid. This Modules explain the reasons for the conditions used in the process by considering the effect of proportions, temperature, pressure and catalyst on the composition of the equilibrium mixture, the rate of the reaction and the economics of the process.
    • The Effect of Changing Conditions
      This page looks at the relationship between equilibrium constants and Le Châtelier's Principle. Students often get confused about how it is possible for the position of equilibrium to change as you change the conditions of a reaction, although the equilibrium constant may remain the same.
    • The Haber Process
      This page describes the Haber Process for the manufacture of ammonia from nitrogen and hydrogen, and then goes on to explain the reasons for the conditions used in the process. It looks at the effect of temperature, pressure and catalyst on the composition of the equilibrium mixture, the rate of the reaction and the economics of the process.