Skip to main content
Chemistry LibreTexts

9.8.1: Lecture Demonstration

  • Page ID
    50845
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Demonstration of Charles' Law

    The volume of a 1 L Florence flask and rubber hose is 1125 mL (fill with water, get volume, then empty). The flask is connected to a 15 mL Pipette used as a water manometer, which in turn is connected to a leveling bulb. The flask is immersed in a 3 L low form beaker of room temperature (25oC) water, and the manometer connected, and the levelling jar adjusted so the water levels are equal and Pgas = Patmosphere. Read the volume. About 30 g of ice is added to the water to lower the temperature a degree or two. The water levels are adjusted, and the new volume determined. 

    Calculate ΔT/ΔV = ~0.267 oC/mL

    To reach V = 0, must decrease 1125 mL * 0.267 oC/mL = 300 o

    Absolute zero = 25oC - 300 = -275o


    This page titled 9.8.1: Lecture Demonstration is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Ed Vitz, John W. Moore, Justin Shorb, Xavier Prat-Resina, Tim Wendorff, & Adam Hahn.

    • Was this article helpful?