Skip to main content
Chemistry LibreTexts

7.2: Acid–Base Reactions: A Guide for Beginners

  • Page ID
  • Let us begin with the hydrogen chloride and water reaction from the last chapter, a classic acid–base reaction. To understand how these types of reactions are related, we need to learn how to identify their essential and common components. Our first hurdle is the fact that the terms acid and acidity, and to a lesser extent, bases and basicity, have entered the language of everyday life. Most people have some notion of acids and acidity. Examples of common usage include: acid rain, stomach acid, acid reflux, acid tongue, etc. You might hear someone talk about wine that tastes acidic, by which they probably mean sour, and most people would nod their heads in comprehension. Old wine tastes like vinegar because it contains acetic acid. You have also probably heard of or even learned about measurements of acidity that involve pH, but what is pH exactly? What is an acid, and why would you want to neutralize it? Are acidic things bad? Do we need to avoid them at all costs and under all circumstances? Although the term base is less common, you may already be familiar with materials that are basic in the chemical sense. Bases are often called alkalis, as in alkaline batteries and alkali metals. They are slippery to the touch, bitter tasting,.

    Not surprisingly, many definitions of acid–base reactions have been developed over the years. Each new definition has been consistent, that is it produces similar conclusions when applied to a particular system, to the ones that have come before, but each new definition has also furthered the evolution of the idea of acids and bases. Later definitions encompass original ideas about acids and bases, but also broaden them and make them more widely applicable, covering a large array of reactions with similar characteristics. We will start with the simplest model of acids and bases—the Arrhenius model.126 This is the most common introduction to acid– base chemistry; perhaps you have already been taught this model. Although the Arrhenius model is of limited usefulness, we will examine its simple structure as the foundation for more sophisticated and useful models. Our model-by-model consideration should help you appreciate how acid–base chemistry has become increasingly general, and powerful over time. As we progress, keep this simple rule in mind: All acid–base reactions begin and end with polarized molecules. As we go through the various models for acid–base reactions, see if you can identify the polar groups and how they interact with each other.


    126 Arrhenius proposed these ideas in 1888 and won a Nobel Prize for his discovery of ionization reactions in solution in 1903.

    • Was this article helpful?