Skip to main content
Chemistry LibreTexts

4.4.2: Polarized Bonds and Electronegativity

  • Page ID
    52311
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Earlier we saw that the boiling points of hydrocarbons tend to increase as the number of carbons in the compound increases and that molecules with similar molecular weights have similar but not identical boiling points, with the shapes of the molecules having an effect, although a relatively small one. The attractions between hydrocarbons are due to London dispersion forces that depend on the size, surface area, and shape of the molecule. The larger these forces, the more strongly molecules will stick together and the more energy (higher temperature) will be needed to overcome these attractions.

    Let us consider the boiling points of some common second row compounds involving bonds with hydrogen, that is, CH4, NH3, H2O and HF, and neon (Ne), which does not form bonds with hydrogen (the compounds of lithium, beryllium, and boron with hydrogen are much less common.) These compounds all have about the same molecular weight but different shapes. Based on our experiences with hydrocarbons, we would be well justified in predicting that they would have somewhat similar boiling points. Unfortunately, this prediction is not supported by experimental evidence (see Table). There is no clear trend, so something is going on that we have not yet considered. To explain this data we have to return to an idea that we discussed in Chapter 3, namely that the size of atoms decreases as you go across a row of the periodic table. Not only does the size (radius) of the atoms decrease (from 70 pm for carbon to 38 pm for neon) but so does the length of the bonds between the atoms and hydrogen (from 109 pm to 92 pm). This is both surprising and counterintuitive (which is why we are reminding you about it!)

    Remember that the size of the atom is based on a balance between the attraction between the negatively charged electrons to the positively charged protons in the nucleus, the repulsions between the electrons as they get close to each other, and of course the arcane, but highly accurate rules of quantum mechanics. The reason that the atom’s size is decreasing as the number of protons increases is that each electron in the valence shell is attracted by an increasing number of protons in the nucleus. The more protons, the larger this attractive force. At the same time, the electrons in the same valence shell do not tend to repel each other as much as you might suspect because they are in different orbitals. Therefore the effective nuclear charge increases from left to right across the periodic table. This increase in effective nuclear charge doesn’t just affect the electrons in isolated atoms; it also affects the electrons in bonds. The ability to attract the electrons in bonds is called electronegativity, and because it derives from the same effect as that that determines effective nuclear charge and atomic radius, electronegativity also

    Electronegativities of selected elements

    tends to increase from left to right across a row in the periodic table. It also decreases from top to bottom in a group of the periodic table. This makes sense because the further electrons are from the nucleus, the less they will be attracted to it. The exceptions to this rule are the noble gases (helium, neon, argon, etc.); because they do not form bonds with other elements (under normal circumstances) their electronegativities are usually not reported.

    Fluorine is the most electronegative element and the Lewis structure of HF shows one H–F bond and three lone pairs. Fluorine attracts electrons very strongly—even the ones in the H–F bond so that the fluorine atom ends up with more than its fair share of electrons and the hydrogen atom ends up with less. One way to think about this is that the electron density in the H–F bond is shifted closer to the fluorine atom and away from the hydrogen atom. The result of this is that the fluorine atom has more negative charge than positive charge and the hydrogen atom has more positive than negative charge. We indicate this by writing a δ charge on the fluorine atom and a δ+ charge on the hydrogen atom (δ is often used to denote a small increment, that is less than 1). That means that there is an unequal distribution of charge in the molecule. The HF molecule has a permanent dipole, that is, a separation of charge; the H–F bond is said to be polarized and the molecule is considered polar. Permanent dipoles are different from the transient dipoles associated with London dispersion forces. Because of their permanent dipoles molecules of HF interact with one another both attractively and repulsively, more strongly in some orientations than in others. HF molecules are attracted to each other much more strongly than neon atoms, for example, because of the presence of these permanent dipoles. This results in a much higher boiling point for HF than for neon (see above). That is, much more energy has to be supplied to the system to overcome the force of attraction and to separate HF molecules from each other than is needed to separate neon atoms. An important point to note is that HF only has one bond, and the polarity of the bond is the same as the polarity of the whole molecule. As we will see, this is not the case in molecules with more complex structures.

    It is relatively easy to predict whether a particular bond is polar by looking at the electronegativity differences between the atoms in that bond. Typically, elements on the left-hand side of the periodic table (metals) have rather low electronegativities and elements over toward the right-hand side (non-metals) have higher electronegativities. There are several ways to calculate electronegativities but in general it is not very useful to memorize specific numbers. It is helpful, however, to understand the trends and to be able to predict bond polarities. Because fluorine is the most electronegative element it can be expected to make the most polarized bonds with hydrogen.78 So let us take this logic a bit further. If HF has the most polar bonds then HF molecules should stick together with the strongest attractions and HF should have the highest boiling point. But oh no! Water’s boiling point is significantly higher (100 ºC compared to 19 ºC for HF). What is going on? Oxygen is not as electronegative as fluorine and so the O–H bond is not as polar as the H–F bond. Why then is the boiling point of H2O 81 °C higher than HF? To answer this question we need to consider another factor that affects the polarity of a molecule – and that is molecular shape.

    Questions to Answer

    1. Why do you think that the trends in effective nuclear charge, ionization energy, and electronegativity are correlated?

    2. What does correlated mean?

    3. Can you draw a picture of (say) four H–F molecules sticking together?

    4. Is there any arrangement that they might take up or would they stick together in a totally random way?

    Questions to Ponder

    1. Why would you not expect polymeric oxygen, that is molecules similar to hydrocarbon chains (or perhaps you would)?

    References

    78 Another way to talk about polarity is to say the bond (or molecule) has a dipole moment (unit Debye)- that is the magnitude of the charges x distance separating them.


    4.4.2: Polarized Bonds and Electronegativity is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?