Skip to main content
Chemistry LibreTexts

3.1.1: Where Do Atoms Come From?

  • Page ID
    52247
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    “We are stardust, we are golden, We are billion-year-old carbon.”

    Woodstock, Joni Mitchell

    “Sometimes I’ve believed as many as six impossible things before breakfast.”

    Alice in Wonderland, Lewis Carroll

    Did you ever stop to ask yourself where the atoms in your body came from? Common answers might be that the atoms in our bodies come from food, water, or air. But these are not the ultimate answers, because we then need to ask, where did the atoms in food, water, and air come from? Where did the atoms in the Earth come from? There are really two general possibilities: either the atoms that make up the Earth and the rest of the universe are eternal or they were generated/created by some process. How do we decide which is true? What is the evidence favoring one model over the other? The answers come not from chemistry, but from astrophysics.

    Given that we are thinking scientifically what kinds of evidence can we look for to decide whether atoms (or the universe) are eternal or recently created? Clearly we must be able to observe the evidence here and now and use it to formulate logical ideas that make clear and unambiguous predictions. As we will see we will be called upon once again to believe many apparently unbelievable things. The current organizing theory in astrophysics and cosmology, known as the Big Bang theory, holds that the universe is ~13,820,000,000 ± 120,000,000 years old or 13.82 ± 0.12 billion years - an unimaginable length of time. The Sun and Earth are ~5,000,000,000 years old, and the universe as a whole is ~156 billion light-years in diameter.51

    The Big Bang theory was put forward in a response to the observation that galaxies in the universe appear to be moving away from one another. Because the galaxies that are further away from us are moving away more rapidly than those that are closer, it appears that space itself is expanding, another seriously weird idea.52 Based on this observation, we can carry out what scientists call a thought experiment. What happens if we run time backwards, so that the universe is contracting rather than expanding? Taken to its logical conclusion, the universe would shrink until, at some point, all of the universe would be in a single place, at a single point, which would be unimaginably dense. Based on a range of astronomical measurements, this so-called singularity existed ~13.73 x 109 years ago, which means the universe is about 13.73 billion years old. The Big Bang theory tells us nothing about what happened before 13.73 x 109 years ago, and although there is no shortage of ideas, nothing scientific can be said about it, because it is theoretically unobservable, or at least that is what we have been led to believe by astrophysicists!


    3.1.1: Where Do Atoms Come From? is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?