Skip to main content
Chemistry LibreTexts

1.7: Interactions Between Atoms and Molecules

  • Page ID
    50985
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    At this point we have arrived at a relatively simple model of the atom. Do not to worry, we will move to more complex and realistic models in the next chapter. In this simple model the atom has a very small but heavy nucleus that contains both protons and neutrons. As we talk about biology now and again, take care not to confuse the nucleus of an atom with the nucleus of a cell; they are completely different - besides the fact that they are of very different sizes. For example, there is no barrier round the nucleus of an atom—an atomic nucleus is a clump of protons and neutrons. Surrounding the atomic nucleus are electrons, in the same number as there are protons. The atom has no net electrical charge since the number of electrons is equal to the number of protons.

    Where the electrons actually are in an atom, however, is a trickier question to answer, because of quantum mechanical considerations, specifically the Heisenberg uncertainty principle, which we will return to in the next chapter. For now we are going to assume the electrons are outside the nucleus and moving. We can think of them as if they were a cloud of electron density rather than particles whizzing around (don’t worry we will provide evidence for this model soon). This simple model captures important features and enables us to begin to consider how atoms interact with one another to form molecules and how those molecules can be rearranged—real chemistry!

    There are four fundamental forces that we know about at the moment. Gravity, the electromagnetic force, the strong nuclear force and the weak nuclear force. For now we can largely ignore the strong nuclear force that is involved in holding the nucleus together: it is an attractive force between neutrons and protons and is the strongest of all known forces in the universe, ~137 times stronger than the electromagnetic force. The strong nuclear force, acts at very short ranges, ~10-15 m, or about the diameter of the nucleus. The other force involved in nuclear behavior, the weak force, plays a role in nuclear stability, specifically the stability of neutrons, but it has an even shorter range of action (10-18 m). Because the nucleus is much smaller than the atom itself we can (and will) ignore the weak and strong nuclear forces when we consider chemical interactions. The force we are probably most familiar with is gravity, which is the weakest force, more than 10-37 times weaker than the electromagnetic force, and we can ignore it from the perspective of chemistry, although it does have relevance for the biology of dinosaurs, elephants, whales, and astronauts. The electromagnetic force is responsible for almost all the phenomena that we encounter in our everyday lives. While we remain grounded on the Earth because of the gravitational interaction between our body and the Earth, the fact that we don't fall through to the center of the earth is entirely due to electromagnetic interactions. One obvious feature of the world that we experience is that it is full of solid things—things that get in each other's way. If atoms and molecules did not interact with one another, one might expect to be able to walk through walls, given that atoms are mostly empty space, but clearly this is not the case. Similarly, your own body would not hold together if your atoms, and the molecules they form, failed to interact. As we will see, all atoms and molecules attract one another—a fact that

    follows directly from what we know about the structure of atoms and molecules.

    Questions to Ponder


    1. What would a modern diagram of an atom look like and what could it be used to explain?

    2. Why don’t the protons within a nucleus repel one another?

    3. Why don’t the electrons and protons attract each other and end up in the nucleus?

    4. How the electrons within an atom interact?

    Questions for Later


    1. Can an atom have chemical and/or physical properties; if so, what are they?

    2. What are chemical and physical properties? Can you give some examples?

    3. What distinguishes one element from another?


    1.7: Interactions Between Atoms and Molecules is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?